
Chapter S:II

II. Basic Search Algorithms
❑ Systematic Search
❑ Graph Theory Basics
❑ State Space Search
❑ Depth-First Search
❑ Backtracking
❑ Breadth-First Search
❑ Uniform-Cost Search

❑ AND-OR Graph Basics
❑ Depth-First Search of AND-OR Graphs
❑ AND-OR Graph Search Basics
❑ AND-OR Graph Search
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Systematic Search
Types of Problems

Each of the problems illustrated in the
::::::::::::::::::
introduction defines a search space S

comprised of objects called solution candidates:

❑ 8-Queens Problem: positions for 8 queens on a chessboard.
❑ 8-Puzzle Problem: finite sequence of moves for the tiles.
❑ TSP: travel tour given as order of visits to the cities.

In particular, a desired solution is expected to be in S. A systematic search should
consider all solution candidates, but each at most once.
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Systematic Search
Types of Problems

Each of the problems illustrated in the
::::::::::::::::::
introduction defines a search space S

comprised of objects called solution candidates:

❑ 8-Queens Problem: positions for 8 queens on a chessboard.
❑ 8-Puzzle Problem: finite sequence of moves for the tiles.
❑ TSP: travel tour given as order of visits to the cities.

In particular, a desired solution is expected to be in S. A systematic search should
consider all solution candidates, but each at most once.

Distinguish two problem types:

1. Constraint satisfaction problems.
A solution has to fulfill constraints.

2. Optimization problems.
A solution has to fulfill constraints and stands out among all other candidates
with respect to a special property.
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Remarks:

❑ General Remark:
In this and further parts, we will consider the constructive approach to search, i.e. finding a
solution is modeled as problem solving.

❑ Constraints can characterize required properties of a solution candidate to be solution:

– 8-Queens: board configuration without threat on any queen;

– 8-Puzzle: move sequence leads to target board configuration;

– TSP: travel tour forms a Hamiltonian cycle in the TSP graph.

❑ Although we are not interested in finding optimum solutions to constraint satisfaction
problems, a solution should be found with minimum search effort. Therefore, we will apply
approaches to solve optimization problems to constraint satisfaction problems as well.

❑ In optimization, a target function is given, a desired solution should maximize (or minimize).
We will use solution cost as optimization criterion which is to be minimized. Another option is
to use merit, e.g., utility, as optimization criterion which is to be maximized.
In constraint satisfaction, cost can be used as an additional constraint for a desired solution,
e.g., that it costs C maximum (or minimum) for a given bound C.

❑ We require a function ⋆(solution_candidate) which can test whether the constraints for a
solution are fulfilled.

❑ Q. Is it possible to pose the 8-Queens problem as (a special case of) an optimization
problem?
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Systematic Search
Modeling Search as Problem Solving

Task: Find a solution within the search space of solution candidates.

Local Search: Consider solution candidates directly.

Construction: Consider the task as a problem and
search for a sequence of problem solving steps.

Ingredients:

❑ We are dealing with (remaining / rest) problems.

❑ The start problem describes the search task.

❑ A set of operators (inspired by the search task) is available
that allow to solve / simplify a problem at hand.

❑ We are done when the remaining problem is trivial (solved).

❑ We are trying to solve the start problem by providing a sequence of problem
solving / simplification steps that leads to a trivial rest problem.
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Systematic Search
Abstract Framework for Search as Problem Solving

Definition 1 (State Transition System STS)

A state transition system is a quadruple T = (S, T, s, F ), consisting of

❑ S, a set of states (remaining / rest problems),
❑ T ⊆ S × S, a transition relation (problem solving / simplification steps),
❑ s ∈ S, a start state (start problem), and
❑ F ⊆ S, a set of final states (trivial rest problems).

Observation:

❑ A search task is reformulated as the task of finding, in a state transition
system (S, T, s, F ), a sequence of transitions s.t. a g ∈ F is reached from s.

❑ (S, T ) defines a directed graph, known as the state space graph.

❑ Because (S, T ) is closely connected the search space of solution candidates
and because (S, T ) defines the search space of paths from s to states in F ,
we call this graph also the search space graph of a search problem.
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Remarks:

❑ Transitions (s0, s1) are entirely local.
A transition (s0, s1) can be used to effect a state change regardless of which transition led to
the s0 state or which transitions will be used to change s1.

❑ A state s1 is reachable from s0 iff either s0 = s1 or there is a state s′ such that s′ is reachable
from s0 and (s′, s1) ∈ T .
Reachability can be shown by providing a corresponding sequence of transitions.
Reachability corresponds to the existence of paths in (S, T ).

❑ A justification for the fact that a state can be reached from another is the disclosure of a finite
sequence of transitions that achieves this (e.g., given as a sequence of intermediate states).

❑ The reachability relation on S is the transitive closure of T .

❑ Transitions in an STS can be considered operation causing a state change. Often, transitions
can be grouped or categorized, e.g. in case of the 8-Puzzle Problem where we have
transitions that are instances of operators "moving left", "right", "up", and "down". Therefore,
labeled STSs can be used to represent such operator information. We will assume that such
information can also be determined from simply knowing a state and its successor state w.r.t.
some transition.
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Systematic Search
Modeling Problem Solving as Reachability Problem for STS

Processes, especially problem solving, can be modeled as state transition systems,
whereby specific questions and related knowledge can be captured.

States are certain situations (remaining problems) of a process
that can be characterized by unique descriptions.

Transitions are state changes of a process
that are initiated by some rules or operations or actions.

Final States are certain states of a process, (not necessarily terminal).

Problem is to check for an initial state, whether a final state can be reached
considering certain (solution) constraints.

Solution is then a suitable sequence of states (transitions).

Solution
Candidates are finite sequences of transitions starting in s.

Search Space is the set of all finite sequences of transitions starting in s.
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Systematic Search
Modeling Problem Solving as Reachability Problem for STS
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Systematic Search
Modeling Problem Solving as Reachability Problem for STS

Processes, especially problem solving, can be modeled as state transition systems,
whereby specific questions and related knowledge can be captured.

States are certain situations (remaining problems) of a process
that can be characterized by unique descriptions.

Transitions are state changes of a process
that are initiated by some rules or operations or actions.

Final States are certain states of a process, (not necessarily terminal).

Problem is to check for an initial state, whether a final state can be reached
considering certain (solution) constraints.

Solution is then a suitable sequence of states (transitions).

Solution
Candidates are finite sequences of transitions starting in s.

Search Space is the set of all finite sequences of transitions starting in s.
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Remarks:

❑ In the search context we call states also (remaining/rest) problems, final states are called
solved problems or goal states.

❑ The simplest constraint for a solution is "no constraint" (i.e., any sequence of transitions from
the start state to a goal state is acceptable).

❑ Some sources define state transition systems by states and transitions, only. The difference
is whether we see s and F as part of the setting or as part of the reachability question.

❑ In general, the modeling of real world problems as state transition systems requires
discretization of non-countable sets of states or applicable transitions, and simplification of
dependencies.

❑ A state description can also be considered as an encoding of a problem description.
Differences to descriptions of final states define the problem of reaching a final state from this
state. Accordingly, states reached by (a sequence of) transitions encode remaining problems,
final states encode solved problems.

❑ In theoretical computer science, reachability problems occur in many contexts (e.g., the
halting problem for Turing machines or the problem whether a grammar for a formal language
generates any terminal strings at all).

❑ Q. What can state transition systems look like for the problems from the
:::::::::::::::
introduction

:::::
part?
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Graph Theory Basics

Definition 2 (Directed Graph)

A directed graph G is a tuple (V,E), where V denotes a nonempty set and
E ⊆ V × V denotes a set of pairs.

The elements v ∈ V are called vertices (or nodes), the elements e = (v, v′) ∈ E are
called directed (from v to v′) edges (or links, arcs).

For two vertices v, v′ in V that are connected with an edge e = (v, v′), the vertex v′ is
called immediate / direct successor or child of v; the vertex v is called immediate /
direct predecessor or parent of v′.

For an edge e = (v, v′), the vertices v, v′ are adjacent, and the vertex-edge
combination v, e and v′, e are called incident, respectively.
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Graph Theory Basics

Definition 2 (Directed Graph)

A directed graph G is a tuple (V,E), where V denotes a nonempty set and
E ⊆ V × V denotes a set of pairs.

The elements v ∈ V are called vertices (or nodes), the elements e = (v, v′) ∈ E are
called directed (from v to v′) edges (or links, arcs).

For two vertices v, v′ in V that are connected with an edge e = (v, v′), the vertex v′ is
called immediate / direct successor or child of v; the vertex v is called immediate /
direct predecessor or parent of v′.

For an edge e = (v, v′), the vertices v, v′ are adjacent, and the vertex-edge
combination v, e and v′, e are called incident, respectively.

n'
n
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Remarks:

❑ Graphs are not restricted to be finite (i.e., graphs can have an infinite set of vertices V and, in
this case, an infinite set of edges E as well).

❑ Here, we restrict ourselves to simple graphs (i.e., we do not allow multiple edges connecting
a vertex v to a successor vertex v′ in a graph as it may occur in multigraphs). If multiple
edges are needed, they can be simulated by introducing unique intermediate vertices in such
edges.

❑ Further, we restrict ourselves to graphs without loops, i.e., there is no edge connecting a
vertex to itself. If loops are needed, they can be simulated by introducing unique intermediate
vertices so that loops become cycles of length 2.

❑ When dealing with undirected graphs, we assume that an undirected edge {v, w} is an
abbreviation for the two directed edges (v, w) and (w, v).
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Graph Theory Basics

Definition 3 (Path, Vertex Types, Outdegree, Local Finiteness)

Let G = (V,E) be a directed graph.

A sequence P = (v0, v1, . . . , vk) of vertices, where each vi, i = 1, . . . , k, is direct
successor of vi−1, is called (directed) path of length k from vertex v0 to the vertex vk.

The vertices v1, . . . , vk are called successors or descendants of the vertex v0. The
vertices v0, . . . , vk−1 are called predecessors or ancestors of the vertex vk. A vertex
without a successor is called terminal.

The number b of all direct successors of a vertex v is called its outdegree. A
graph G is called locally finite iff (↔) the outdegree of each vertex in G is finite.

n'
n

v1

v3 v4
Terminal vertex

v0

v2

S:II-15 Basic Search Algorithms © Stein/Lettmann/Hagen 1998–2021



Graph Theory Basics

Definition 3 (Path, Vertex Types, Outdegree, Local Finiteness)

Let G = (V,E) be a directed graph.

A sequence P = (v0, v1, . . . , vk) of vertices, where each vi, i = 1, . . . , k, is direct
successor of vi−1, is called (directed) path of length k from vertex v0 to the vertex vk.

The vertices v1, . . . , vk are called successors or descendants of the vertex v0. The
vertices v0, . . . , vk−1 are called predecessors or ancestors of the vertex vk. A vertex
without a successor is called terminal.

The number b of all direct successors of a vertex v is called its outdegree. A
graph G is called locally finite iff (↔) the outdegree of each vertex in G is finite.

n'
n

v1

v3 v4
Terminal vertex

v0

v2

S:II-16 Basic Search Algorithms © Stein/Lettmann/Hagen 1998–2021



Remarks:

❑ If first and last vertex of a path (v0, v1, . . . , vk) are of interest, we denote such a path by Pv0−vk.

❑ There is no uniform notation for graphs. Some sources define (directed) paths as special type
of walks.
A walk is a finite sequence of (directed) edges, where each two subsequent edges are
incident with the same vertex. Further constraints can be made on uniqueness of vertices or
edges in a walk. [Wikipedia (accessed 21-09-21)]

As we are dealing with simple graphs (no multigraphs), the edges traversed are immediately
clear from the sequence of vertices.

❑ As there is no uniform terminology for paths, we explicitly state that multiple occurrences of
vertices are allowed in our context. So, paths can be cyclic.

❑ The concept of a path can be extended to cover infinite paths by defining them as an infinite
sequence of vertices (v0, v1, v2 . . .). An infinite path has no end vertex.

❑ The outdegree of a graph is the maximum of the outdegrees of its vertices.

The fact that a graph is locally finite does not entail that its outdegree is finite.
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Graph Theory Basics

Definition 4 (Directed Tree, Uniform Tree)

Let G = (V,E) be a directed graph. G is called a directed tree with root s ∈ V , if
|E| = |V | − 1 and if there is a directed path from s to each vertex in V .

The length of a path from s to some vertex v ∈ V is called the depth of v.

The terminal vertices of a tree are also called leaf vertices, or leafs for short.

A uniform tree of depth h is a tree where each vertex of depth smaller than h has
the same degree, and where all vertices of depth h are leaf vertices.

Root

Leaf
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Remarks:

❑ For trees, the indication of the edge direction usually will be omitted, since all edges are
equally oriented, from the root vertex towards the leaf vertices.

❑ Backpointer structures established by search algorithms match trees when all edge directions
are flipped.

S:II-19 Basic Search Algorithms © Stein/Lettmann/Hagen 1998–2021



State Space Search
Modeling Problem Solving as Path-Finding Problem

❑ Processes, esp. problem solving, can be modeled as state transition systems.

❑ A state transition system T = (S, T, s, F ) defines a graph (S, T ) of possible
transitions.

➜ Deciding, whether a final state is reachable from s, is a path-finding problem
in the graph (S, T ).

Vertices represent states of a process.

Edges represent state transitions of a process.

Goal Vertices represent goal states (solved problems).

Problem is to decide for vertex s whether a goal vertex is reachable
considering certain (solution) constraints.

Solution is then a suitable path from s to a goal vertex.

Solution
Candidates are finite paths starting from s.

Search Space is the set of all finite paths starting from s.
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State Space Search
Modeling Problem Solving as Path-Finding Problem (continued) [

:::::::::::::::::::::
Problem-Reduction]

Definition 5 (State-Space, State-Space Graph)

Given a state transition system T = (S, T, s, F ), the set of states S is called
state-space. The graph G = (S, T ) defined over S by T is called state-space graph.

Naming conventions:

❑ Vertices of in a state-space graph are called states.

❑ The edges in a state-space graph define alternatives how the parent problem
can be simplified. The edges are called OR edges (OR links).

❑ States with only outgoing OR edges are called OR states.

❑ The state-space graph is an OR graph (i.e., a graph that contains only
OR edges).

Modeling:

❑ The possible states of a system or a process form the state space.

❑ The possible state transitions form the state-space graph.
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Remarks:

❑ A state-space graph is a variant of the more general concept of a search space graph also
includes other types of problem solving steps, such as problem decompositions.

❑ If state transitions in a system or a process result from the application of an operator, rule, or
action, the edge in the state-space graph can be labeled accordingly.
In the 8-Puzzle problem the operators are {up,down, left, right}. Their parameters can be
uniquely determined by the states to which they are applied.
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State Space Search
Modeling Problem Solving as Path-Finding Problem (continued) [

:::::::::::::::::::::
Problem-Reduction]

Definition 6 (Solution Path, Solution Base, State-Space Search)

Let G be a state-space graph containing a state s, and let γ ∈ G be a goal state.
Then a path P in G from s to γ is called solution path for s. A path P in G from s to
some state s′ in G is called solution base for s.

A search for a solution path in a state-space graph is called state-space search.

Usage:

❑ Solution Paths
We are interested in finding a solution path P for the start state s in G.

❑ Solution Bases
Algorithms maintain a number of promising solution bases and extend them
until it turns out that one of them is a solution path.

❑ Constraint Satisfaction Problems
Some solution constraints are given and we search for a solution path
satisfying these constraints.
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Remarks:

❑ Please note, that in the definition of solution paths and solution bases state s does not denote
the start state. We can have solution paths and solution bases for any state in a state-space
graph.

❑ Obviously, all solution paths contained in G are also solution bases.

❑ When modeling problem solving as a path-finding problem in a state-space graph G, the
search space consists of all finite paths in G starting in a start state s. A solution base
represents a set of candidates paths in this search space (i.e., the set of all finite paths in G
that have the solution base as an initial part).

❑ While solution paths are often discussed with respect to the underlying state-space graph,
solution bases are only considered within a finite subgraph of the state-space graph which
was explored so far by an algorithm.

❑ If P is a solution base for a state s′ in G and if s0 is some state in P , then the subpath P0 of P
starting in s0 and ending in the tip state of P is a solution base for s0. This subpath P0 is
sometimes called the solution base in P induced by s0.
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State Space Search
Illustration of Solution Paths and Solution Bases

s

State-space graph:

Goal state 
(solved rest problem)
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State Space Search
Illustration of Solution Paths and Solution Bases

s

State-space graph:

Goal state 
(solved rest problem)

s

Solution path for state s :
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State Space Search
Illustration of Solution Paths and Solution Bases

s

State-space graph:

Goal state 
(solved rest problem)

s

Solution path for state s :

s

Solution base for s :
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State Space Search
Graph Representation

Problem: How to search for a solution path in an infinite state-space graph?
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State Space Search
Graph Representation

Problem: How to search for a solution path in an infinite state-space graph?

Explicit Graph (Representation)

❑ A graph G = (V,E) is specified by listing all vertices in V and all edges in E explicitly.

➜ Algorithms using an explicit graph representation can handle finite graphs only.

Implicit Graph (Representation)

❑ A graph G is specified by listing a set S of start vertices and giving a function successors(v)
returning the set of direct successors of vertex v in G.

❑ A graph G is specified by listing a set S of start vertices and giving a function
next_successor(v) returning an unseen direct successor of vertex v in G.

➜ Algorithms using an implicit graph representation can handle graphs with finite set S and
computable function successors(v) (resp. computable next_successor(v) and expanded(v)).

➜ We restrict ourselves to singleton sets S (i.e., we have a single start vertex s).
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Remarks:

❑ The function next_successor(v) generates the direct successors of v in G one by one. In
order to simplify notation and algorithms, we assume that a function next_successor(v) itself
stores which successors have been generated so far, and returns null if none are left.

❑ An explicit representation of a graph G can be determined from its implicit representation in
the following way.

V0 := S E0 := ∅
Vi+1 := {v′ | v′ ∈ successors(v), v ∈ Vi} Ei+1 := {(v, v′) | v′ ∈ successors(v), v ∈ Vi}

V :=
∞⋃
i=0

Vi E :=
∞⋃
i=0

Ei

Then G = (V,E).

❑ There are graphs for which no implicit representation with finite set S of start vertices exists
(e.g., graphs with infinite set of vertices, but empty edge set).

❑ Let G = (V,E) be an explicitly defined graph and let graph G′ be implicitly defined by a start
vertex s ∈ V and an appropriate function successors(n). In general, these two graphs will not
be the same. Without further notice, we will restrict ourselves to the subgraph of G induced
by the set of vertices that are reachable from s.
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State Space Search
Graph Algorithms and Back-pointer Structures

Let algorithm A process a state-space graph G with an implicit representation given
by a start state s and a function next_successor (.) respectively successors(.).

After a finite number of steps, algorithm A has encountered . . .

❑ a finite number of states in V (G) including s,

❑ a finite number of edges.

Information about G is stored in structures of type NODE, typically denoted by n

and called nodes, containing at least

❑ a reference to a state in V (G) that is represented,

❑ a reference to a parent NODE structure.
(Applying next_successor (.) respectively successors(.) to the state of the
parent returned the current state as successor.)

In order to simplify algorithms, we assume that next_successor (.) respectively
successors(.) accept NODEs as arguments and return NEW NODEs.
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State Space Search
Illustration of Back-pointer Usage

Paths in GPaths in G
(State Sequences)

Corresponding
Tree of Paths

Back-pointer
Structure

sb
n1 sn2

ss

sa
n

n1 n2

n

s s

sa

sb

...

...

...
(s, n, n2)

(s, sa, sb)
Left:

(s, n, n1)

(s, sa, s)
Right:
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State Space Search
Illustration of Back-pointer Usage

Paths in GPaths in G
(State Sequences)

Corresponding
Tree of Paths

Back-pointer
Structure

sb
n1 sn2

ss

sa
n

n1 n2

n

s s

sa

sb

...

...

...
(s, n, n2)

(s, sa, sb)
Left:

(s, n, n1)

(s, sa, s)
Right:

Paths in G

❑ Graph visualization appropriate for (finite) graphs.

❑ Emphasizing states and edges of paths does not allow to detect start and end of a path or to
distinguish paths.

❑ Illustrating paths in a depiction of a graph requires additional information apart from states
and edges.
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State Space Search
Illustration of Back-pointer Usage

Paths in GPaths in G
(State Sequences)

Corresponding
Tree of Paths

Back-pointer
Structure

sb
n1 sn2

ss

sa
n

n1 n2

n

s s

sa

sb

...

...

...
(s, n, n2)

(s, sa, sb)
Left:

(s, n, n1)

(s, sa, s)
Right:

Paths in G (node sequences)

❑ Given the sequence of nodes, a path in G is uniquely described.

❑ States may occur multiple times in a path.
Talking about specific positions in a path requires additional information: order of occurrences
(last occurrence of s), order of states (third state in the path), naming a position (start and
end of a path).

❑ Paths sharing an initial part cannot be detected easily.
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State Space Search
Illustration of Back-pointer Usage

Paths in GPaths in G
(State Sequences)

Corresponding
Tree of Paths

Back-pointer
Structure

sb
n1 sn2

ss

sa
n

n1 n2

n

s s

sa

sb

...

...

...
(s, n, n2)

(s, sa, sb)
Left:

(s, n, n1)

(s, sa, s)
Right:

Tree of Paths in G

❑ Appropriate visualization for a (finite) set of (finte) paths with common starting state.

❑ Paths sharing an initial part can be detected easily.

❑ States may occur multiple times in paths.
Talking about specific positions in a path requires additional information: additional naming of
vertices apart from state information.

❑ Constructible with start state and next_successor(.) respectively successors(.).

❑ Efficiently storing paths sharing an initial part is not obvious when using edge directions.
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State Space Search
Illustration of Back-pointer Usage

Paths in GPaths in G
(State Sequences)

Corresponding
Tree of Paths

Back-pointer
Structure

sb
n1 sn2

ss

sa
n

n1 n2

n

s s

sa

sb

...

...

...
(s, n, n2)

(s, sa, sb)
Left:

(s, n, n1)

(s, sa, s)
Right:

Back-pointer Structures for G

❑ Constructible with start node and next_successor(.) respectively successors(.).

❑ A name assigned to a node denotes a unique structure.

❑ Efficiently storing paths sharing an initial part is trivial when using opposite edge directions.

❑ Names for nodes can be used to specify vertices in a tree of paths.

❑ Names for nodes can be used to specify paths as sequence of states.

❑ Polymorphism: Node n is data structure, vertex in a tree of paths, path, and state.
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Remarks:

❑ From the implementation point of view, each call of next_successor(n) respectively
successors(n) with a node n results in a (list of) NEW node structures, even if the same state
and/or parent is referenced as in some other node instance.

❑ To reduce the polymorphism, we will talk about "a path represented by a node n" or about "a
node n referencing some state".

❑ In a slight abuse of notation, a node representing the start state s in a state-space graph is
also denoted by s and a node representing a goal state γ is also denoted by γ and called a
goal node.

❑ When talking about back-pointer structures, we usually consider all structures that
theoretically can be constructed using some start node and next_successor(n) respectively
successors(n) for nodes.
A statement like
"For all paths in G starting in s we have ..."
then becomes
"For all paths in G given by a ode n we have ..."
or even
"For all nodes n in G we have ..."
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State Space Search

Definition 7 (Node Generation, Node Expansion)

Let G be an implicitly defined state-space graph. Let A be an algorithm working on
G, using node structures and given the start node s and a function
next_successor (n) respectively successors(n).

Applying the function next_successor (n) in A and thereby generating a new node
for a successor state is called node generation. The new node is called generated,
the parent is (being) explored when the first successor state is determined and
expanded when next_successor (n) returned null.

Applying the function successors(n) in A and thereby generating new nodes for all
direct successor states of a node in one (time) step is called node expansion. The
new nodes are called generated, the parent is expanded.

❑ Node expansion can be seen as the iterated use of node generation without
interruption until all successors have been generated.

➜ Except for the algorithm Backtracking (BT), all considered algorithms will use
node expansion as a basic step.

S:II-40 Basic Search Algorithms © Stein/Lettmann/Hagen 1998–2021



State Space Search
Node Generation as a Basic Step

generated

expanded

Time t + 1

explored,
not expanded

t t + k

generated,
not explored

� � ... �

Node status:

❑ Left: Initially, the status of the parent node has to be generated.

❑ Middle: The status of the parent node is called explored.

❑ Right: The status of the parent node is called expanded if all of its direct
successors are generated.

Algorithms based on node generation generate direct successors of a node one by one as needed.

Disadvantage: next_successor(n) has to keep track of generated successors.
Advantage: The algorithm itself has to store fewer nodes.
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State Space Search
Node Expansion as a Basic Step

generated

expanded

Time t t +1

generated,
not expanded

�

Node status:

❑ Left: Initially, the status of the parent node has to be generated.

❑ Middle: The status of the parent node is called explored.

❑ Right: The status of the parent node is called expanded if all of its direct
successors are generated.

Algorithms based on node expansion generate all direct successors of a node in one step.

Advantage: successors(n) is easier to implement.
Disadvantage: The algorithm itself has to store more nodes.
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Remarks:

❑ Using node generation as a basic step requires additional accounting: Due to the step-wise
expansion, already applied operators (transitions) and thus already considered states and
generated nodes must be known. Such information could be also provided, for example, by
function next_successor(s) and stored in the generated node.
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State Space Search
Explicit Parts of State-Space Subgraphs

Let A be an algorithm working on a state-space G, given node s and successors(n).

❑ What A could know about the structure of G after t node expansions:
Explored (sub)graph Ht of G after t node expansions.
Inductive Definition: H0 = ({s}, {})

Ht+1 = (V (Ht+1), E(Ht+1)) with

V (Ht+1) = V (Ht) ∪ successors(n)
E(Ht+1) = E(Ht) ∪ {(n, n′) | n′ ∈ successors(n)}

Computing successors of a node will return new instantiations (clones) of nodes.

❑ What A could know if A does / does not care for equal states referenced in node structures:

�

s

a b

c d e

H t s

a b

c d e

d

c e

Tree-unfolding of H t

We call Ht the explored part of G known by A after t node expansions.
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State Space Search
Requirements for an Algorithmization of State-Space Search

Prop0(G) Required Properties of a Search Space Graph G

1. G is a state-space graph (directed OR graph).

2. G is implicitly defined.
(a) G has a single start state s and
(b) G has a computable function successors(.) and next_successor(.) returning successor

states of the state given as argument.

For a node n, the functions successors(n) and next_successor(n) respectively, always return
new nodes referring to the successor states of the state referenced in node n.

3. G is locally finite.

4. A set Γ of goal states in G is given; in general Γ will not be a singleton set.
Goal states are terminal states (states without successors) in G.

5. G has a computable function ⋆(.) returning true if a given state is a goal state.

Task

❑ Determine a solution path for s in G.
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Remarks:

❑ The terms search space, search space graph, and search graph will be used synonymously.

❑ Minimum requirement for a solution path is that the terminal node of a solution base is a goal
node. If a solution path must satisfy given constraints, a corresponding computable function
has to be available to check the constraints for a solution path.

❑ The property of a graph of being locally finite does not imply an upper bound for a node’s
degree, i.e., for the size of the node set that can be generated.

❑ Two nodes in an OR graph can be connected by two (oppositely) directed links, which then
may be viewed as a single undirected edge. Undirected edges represent a kind of "invertible"
operator.

❑ The functions successors(n) resp. next_successor(n) return new node instances for each
successor state of an expanded node. An algorithm that does not care whether two nodes
represent the same state will, therefore, consider an unfolding of the state-space graph to a
tree with root s.
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Remarks (continued) :

❑ Questions:

1. Which of the introduced search problems give rise to undirected edges?

2. How can multiple start states be handled?

3. Is it possible to combine multiple goal states into a single goal state?

4. How is it possible to guarantee that goal states are terminal (states without successors)?

5. For which kind of problems may the search space graph not be locally finite?

6. How can we deal with problems whose search space graph is not locally finite?

7. What will happen if none of the goal states in Γ can be reached?
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State Space Search
Generic Schema for OR-Graph Search Algorithms

... from a solution-base-oriented perspective:

1. Initialize solution base storage.

2. Loop.

(a) Using some strategy select a solution base to be extended.

(b) Expand the only unexpanded node in the solution base.

(c) Extend the solution base by one successor node at a time and save it as a
new candidate.

(d) Determine whether a solution path has been found.

Usage:

❑ Search algorithms following this schema maintain a set of solution bases.

❑ Initially, only the start node s is available; node expansion is the basic step.
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State Space Search
Algorithm: Generic-OR (Compare Basic-OR.)
Input: s. Start state (initial problem) in G.

successors(s0). Returns the successor states of s0 in G.
⋆(s0, . . . , sk). Predicate that is True if (s0, . . . , sk) is a solution path for s0 in G.
constraints(s0, . . . , sk). Predicate that is True if (s0, . . . , sk) satisfies solution constraints.

Output: A solution base b representing a solution path or the symbol Fail .

Generic-OR(s, successors, ⋆, constraints)

0. IF ⋆( (s) ) THEN IF constraints( (s) ) THEN RETURN( (s) ); // Check (s).

1. add( (s) , OPEN); // Store sol. base (s) on OPEN to wait for expansion.

2. LOOP

3. IF (OPEN == ∅) THEN RETURN(Fail);

4. b = choose(OPEN); // Choose a solution base b from OPEN.
remove(b, OPEN); // Remove b from OPEN.

5. s0 = last_state(b); // Determine last state in b.
FOREACH s′ IN successors(s0) DO // Expand s0.

b′ = append(copy(b), s′); // Extend solution base b.
IF ⋆(b′) THEN // Check whether base b′ is a solution path.
IF constraints(b′) THEN RETURN(b′); // Check sol. constraints.

add(b′, OPEN); // Store b′ on OPEN to wait for extension.
ENDDO

6. ENDLOOP
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Remarks:

❑ Algorithm Generic-OR takes a state-oriented point of view. We directly work with states and
paths that are lists of states. All following algorithms will take a node-oriented point of view.

❑ The input parameters (here and in all following algorithms) are problem-specific.
Non-problem-specific functions such as add(.),depth(.),expand(.),pop(.),push(.), top(.), etc.
are used directly (≈ "axiomatically") in the pseudocode.

❑ In constraint satisfaction problems, a solution path is constrained in that certain conditions
must be satisfied. A predicate constraints(.) can provide this check.
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Remarks:

❑ Generic-OR search maintains and manipulates solution bases which are stored as
sequences of states.

❑ The last state of a solution base represents a remaining problem which still is to be solved.
So, a solution base represents some open problem. Therefore, the solution base storage is
called OPEN list.

❑ For an OPEN list some appropriate data structure can be used.

❑ Function append(copy(b), s′) returns a representation of the extended solution base. For
simplicity we assume that b is copied when calling append(copy(b), s′). Then, each solution
base resulting from an expansion step is represented separately, although they share initial
subsequences.

❑ Information on the explored part of the search space graph is stored within the solution
bases. States are contained in solution bases and edges are given by pairs of neighboring
states (occurring in solution bases).
In fact, after t expansion steps, the solution bases in OPEN store parts of the explored part
Ht of the search space graph G by storing maximal paths in Ht, that still have to be
considered (i.e., paths from s to a terminal node in Ht).

❑ For algorithm Generic-OR it is not important that function successors(.) returns unique
structures for each successor state of an expanded state. There is no need for a unique state
representation as paths information is stored explicitly by separate sequences (lists).
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State Space Search
Efficient Storage of Solution Bases

5. FOREACH s′ IN successors(s0) DO // Expand s0.
b′ = append(copy(b), s′); // Extend solution base b.
...

Idea: A solution base can be represented by its last node
and a reference to the previous solution base.

➜ Back-pointer: a reference at each newly generated node, directting to its
parent.

γ1

γ2

s

back-pointer reference

edge of path in G

➜ A solution base is represented by a node defining a back-pointer path.
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Remarks:

❑ The back-pointer of start node s has value null.

❑ The back-pointer idea allows for an efficient recovery of a solution base given its terminal
node if there is at most one back-pointer per node.
If an algorithm wants to store more than one back-pointer per node, multiple solution bases
can be represented by a node.

❑ Within an algorithm, we assume that a node is discarded if the node was removed from the
algorithm’s data structures and if the node is not accessible from some other node in the data
structures. (Garbage Collection)
Nevertheless, we sometimes mention removing a node explicitly.
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State Space Search
Efficient Storage of Solution Bases (continued)

❑ Algorithms that only store or discard nodes but change back-pointers in a very
restrictive way once they are set, store a tree-like graph at any point in time.

❑ The back-pointer structure represents a tree unfolding of some part of the
explored part of G.
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State Space Search
Efficient Storage of Solution Bases (continued)

❑ Algorithms that only store or discard nodes but change back-pointers in a very
restrictive way once they are set, store a tree-like graph at any point in time.

❑ The back-pointer structure represents a tree unfolding of some part of the
explored part of G.

Definition 8 (Traversal Tree, Backpointer Path)

Let A be an algorithm working on an implicitly defined state-space graph G.
Let A store with each generated node instance a back-pointer to its parent node
(i.e., the node instance that was expanded). Hereby, a graph Gt is defined at each
point t in time with state instances from G and edges reverse to the back-pointers.

The graph Gt maintained by A is a tree rooted in s, we call Gt a traversal tree.

For a node n, the reversed sequence of back-pointer-reachable nodes (s, . . . , n)

defines a path in Gt, the so-called back-pointer path for n, denoted as PPs−n,t.

Path PPs−n,t corresponds to a path in G (instances of the same states in Gt unified).

Gt is the tree unfolding of (a part of) the explored part Ht of G.
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Remarks:

❑ Traversal trees and back-pointer structures change over time: traversal trees grow with each
node instance that is integrated into the back-pointer structure. But usually traversal trees are
considered at fixed points in time. Therefore, if the context allows, we omit the index t for the
time (in between node expansions: after the last expansion and corresponding processing
was finished and before the next expansion starts).

❑ In general, traversal trees are no subgraphs of the search space graph G, since Gt – being a
tree of paths in G – can contain multiple instances of states in G. If an algorithm performs
[
:::::
path

::::::::::::
discarding], i.e., if the algorithm discards node instances representing a state that is

already referenced by some other node in the back-pointer structure, then the traversal tree
Gt will represent cycle-free paths in G starting in s and therefore Gt is a subgraph of G.

❑ A traversal tree is defined by the nodes stored so far and the edges inverse to the current
back-pointer setting.

❑ Pointer-paths are those paths in G that have been found so far by algorithm A.

❑ Algorithms may remove parts of a back-pointer structure, if a part of G was completely
searched without finding a solution.
Therefore, the back-pointer-structure maintained by an algorithm at some point in time t
might not correspond to the explored part Ht of G.
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State Space Search
Efficient Storage of Solution Bases (continued)

❑ A traversal tree is not directly maintained by an algorithm.

❑ A traversal tree is finite at any point in time.

❑ A traversal tree is a tree-unfolding of a part of the explored subgraph of G.

ss

Information maintained by algorithm A:
back-pointer structure
    = nodes for states in G + back-pointers

Traversal Tree
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State Space Search
Efficient Storage of Solution Bases (continued)

❑ A back-pointer path is a solution base in G which can be uniquely identified by
a node n in the back-pointer structure.

❑ Using the back-pointer concept, algorithm seem to use single nodes instead
of solution bases. Even returning a solution can be done by returning the goal
node found (node representing a foal state).

ss

Back-pointer PathPath defined by node n

n

S:II-58 Basic Search Algorithms © Stein/Lettmann/Hagen 1998–2021



State Space Search
Schema for Search Algorithms

... from a graph-oriented perspective inspired by the back-pointer structure

... using either node expansion or node generation as basic step:

1. Initialize node storage.

2. Loop.

(a) Using some strategy, select an unexpanded node to be explored.

(b) Start resp. continue the exploration of that node.

(c) Determine whether a solution path has been found.

Usage:

❑ Search algorithms maintain sets of nodes.

❑ Initially, only the start node s is available.

❑ Search algorithms can make use of graph nodes stored in two lists OPEN
and CLOSED and of graph edges stored in form of back-pointers.

❑ Solution bases currently maintained are defined by nodes in OPEN.
S:II-59 Basic Search Algorithms © Stein/Lettmann/Hagen 1998–2021



Remarks:

❑ This schema also works for AND/OR-graph search. Instead of searching for solution paths
we will then consider solution graphs in step 2(c).

❑ The search space graph, which is defined by the states and operators of a problem domain,
is called underlying (search space) graph. An underlying graph is usually denoted by G. The
underlying graph is not completely accessible to search algorithms.

❑ Graph search starts from a single node s and uses node expansion or node generation as a
basic step.
During graph search, only the finite explored (sub)graph is accessible at a point in time t. An
explored subgraph Ht or the traversal tree Gt is sometimes also denoted by G, except in
cases where the underlying search space graph is addressed as well.

❑ An explored subgraph Htof G is rooted at node s, the root node of the underlying search
space graph. The explored subgraph Ht is connected, more precisely, all nodes in Ht can be
reached from s.

❑ In a narrower sense, the exploration of a generated node n starts with the ⋆(n) function and
not with the generation of a first successor node.
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State Space Search
Searching a Search Space Graph

At any time of a search, the nodes (for states) of a search space graph G can be
divided into the following four sets according to their status:

1. Nodes that are not generated yet.

2. Nodes that are generated but not explored yet.

3. Nodes that are explored but not expanded yet.

4. Nodes that are expanded.

The distinction gives rise to the well-known sets to organize graph search:
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State Space Search
Searching a Search Space Graph

At any time of a search, the nodes (for states) of a search space graph G can be
divided into the following four sets according to their status:

1. Nodes that are not generated yet.

2. Nodes that are generated but not explored yet.

3. Nodes that are explored but not expanded yet.

4. Nodes that are expanded.

The distinction gives rise to the well-known sets to organize graph search:

❑ Generated or explored but not expanded nodes are called “open”.
They are maintained in a so-called OPEN list.
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State Space Search
Searching a Search Space Graph

At any time of a search, the nodes (for states) of a search space graph G can be
divided into the following four sets according to their status:

1. Nodes that are not generated yet.

2. Nodes that are generated but not explored yet.

3. Nodes that are explored but not expanded yet.

4. Nodes that are expanded.

The distinction gives rise to the well-known sets to organize graph search:

❑ Generated or explored but not expanded nodes are called “open”.
They are maintained in a so-called OPEN list.

❑ Expanded nodes are called “closed”.
They are maintained in a so-called CLOSED list.
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Remarks:

❑ The classification of nodes can be seen as a classification of states in G. However, we must
distinguish in which context a state was considered. Therefore, the successors of a state can
be considered more than once.

❑ The situation characterized by Property 1 (“not generated”) is indistinguishable from
situations where a node had already been generated and was discarded later on.

❑ The node sets that are induced by the Properties 2, 3, and 4, the generated nodes, the
explored nodes, and the expanded nodes, form a subset-hierarchy: only generated nodes
can be explored, only explored nodes can be expanded.

S:II-64 Basic Search Algorithms © Stein/Lettmann/Hagen 1998–2021



State Space Search
Algorithm: Basic-OR (Compare Generic-OR,

::::::::::::::::
Basic-DFS,

::::::::::::::::
Basic-BFS.)

Input: s. Start node representing the initial state (problem) in G.
successors(n). Returns new instances of nodes for the successor states in G.
⋆(n). Predicate that is True if n represents a goal state in G.
constraints(n). Predicate that is True if path repr. by n satisfies solution constraints.

Output: A node γ representing a solution path for s in G or the symbol Fail .

Basic-OR(s, successors, ⋆, constraints) // A variant of Generic-OR.

0. s.parent = null;
IF ⋆(s) THEN IF constraints(s) THEN RETURN(s); // Check path repr. by s.

1. add(s, OPEN); // Store s on OPEN to wait for expansion.

2. LOOP

3. IF (OPEN == ∅) THEN RETURN(Fail);

4. n = choose(OPEN); // Choose a solution base represented by n.
remove(n, OPEN); add(n, CLOSED); // CLOSED for garbage collection.

5. FOREACH n′ IN successors(n) DO // Expand n.
n′.parent = n; // Extend solution base represented by n.
IF ⋆(n′) THEN // Check whether n′ represents a solution path.
IF constraints(n′) THEN RETURN(n′); // Check sol. constraints.

add(n′, OPEN); // Store n′ on OPEN to wait for expansion.
ENDDO

6. ENDLOOP
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Remarks:

❑ Algorithm Basic-OR takes a graph-oriented perspective:

Basic-OR maintains a back-pointer structure by processing nodes and back-pointers.

❑ A solution base is stored via its terminal nodes that are connected via back-pointers to their
predecessors in the solution base.
Therefore, OPEN is now a list of nodes.

❑ The node list CLOSED is kept for garbage collection purposes. Since nodes are shared in
back-pointer paths, a node can not be discarded before its last successor was discarded.

❑ Information on the explored part of the search space graph is stored in lists of nodes, OPEN
and CLOSED. Information on edges is stored in the back-pointers of the nodes. A
back-pointer represents an edge with opposite direction.

❑ For OPEN and CLOSED some appropriate list data structure can be used.

❑ If storing instances of nodes with the same state reference should be avoided, no two paths
leading to the same node can be allowed in G, especially no cycles. In this case G is a tree
with root s.

❑ The start node s is usually not a goal node. If this is known in advance, the second line of the
algorithm can be omitted:

IF ⋆(s) THEN IF constraints(s) THEN RETURN(s);

In future, this line will be omitted if there is not enough space. Additionally, the check for
constraints will sometimes not be mentioned explicitly.
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State Space Search
Important Properties of Search Algorithms

Definition 9 (Termination, Soundness, Completeness)

Let A be an algorithm searching a state-space graph G for a solution path for a
given state s.

1. A terminates if A returns a result Fail or a solution within a finite number of
steps.

2. A is sound if – in case A terminates and returns a path – then this path is in
fact a solution path for s in G.

3. (For constraint satisfaction problems) A is complete if A terminates returning
a solution (satisfying the constraints) if a solution (satisfying the constraints)
exists.

➜ The algorithms presented here are sound by construction:
A solution path was checked before returning it.
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Remarks:

❑ Usually, soundness and completeness are used in the context of algorithms A for decision
problems:

A is sound if – in case A returns "yes" – the true answer is "yes";
A is complete if – in case "yes" is the true answer – A returns "yes".
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State Space Search

Lemma 10 (Termination of Basic-OR for Finite Graphs without Cycles)

Basic-OR terminates for finite graphs G without cycles that have the
Prop0(G) properties.

Proof (sketch)

1. Since G has Prop0(G) and G is finite and cycle-free,
the number of finite paths starting in s is finite.

2. At each point in time (whenever Basic-OR is in step 2) before Basic-OR terminates, the
nodes in OPEN and CLOSED represent pairwise different finite paths in G starting in s.

3. In each run through the main loop, one node is moved from OPEN to CLOSED.

4. Since the number of paths G starting in s is finite, Basic-OR must terminate.
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State Space Search

Lemma 11 (Completeness of Basic-OR for Finite Graphs without Cycles)

Basic-OR is complete for finite graphs G without cycles that have the
Prop0(G) properties.

Proof (sketch)

1. Since G has Prop0(G) and G is finite and cycle-free, Basic-OR terminates. (Lemma 10)

2. Let G contain a solution path Ps−γ for s.

3. At any point in time before Basic-OR terminates, there is an OPEN node in Ps−γ

(not necessarily representing an initial part of Ps−γ).

4. As long as there is such an OPEN node available, Basic-OR will not terminate with Fail .

5. Latest when an OPEN node representing γ has to be selected for expansion, Basis-OR
terminates returning a solution.
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State Space Search
Searching a Search Space Graph (continued)

A search strategy decides which node to expand next. A search strategy should be
systematic, i.e. it should consider any solution base, but none twice.

Search strategies are distinguished with regard to the regime the nodes in the
search space graph G are analyzed:

1. Blind or uninformed.
The order by which nodes in G are chosen for exploration / expansion
depends only on information collected during the search up to this point.
I.e., the not explored part of G, as well as information about goal criteria, is
not considered.

2. Informed, guided, or directed.
In addition to the information about the explored part of G, information about
the position (direction, depth, distance, etc.) of the goal nodes Γ, as well as
knowledge from the domain is considered.
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State Space Search
Uninformed Systematic Search

The key for systematic search is to keep alternatives in reserve, leading to the
following trade-off:

Space (for remembering states) versus Time (for re-generating states)
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State Space Search
Uninformed Systematic Search

The key for systematic search is to keep alternatives in reserve, leading to the
following trade-off:

Space (for remembering states) versus Time (for re-generating states)

Uninformed (blind) search will expand nodes independent of knowledge (e.g.,
knowledge about goal nodes in G).
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Remarks:

❑ Search algorithm schemes that are uninformed—and systematic at the same time—are also
called “tentative strategies”.

❑ Known representatives of uninformed (systematic) search strategies are depth-first search,
backtracking, breadth-first search, and uniform-cost search.

❑ Disclaimer (as expected): the vast majority of real-world problems cannot be tackled
efficiently with uninformed search.
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State Space Search
Basic-OR Search for Optimization

Setting:

❑ The search space graph contains several solution paths.
❑ A cost function assigns cost values to solution paths.

Task:

➜ Determine a cheapest path from s to some goal γ ∈ Γ.

Approach:

❑ Pursue some node selection strategy.

❑ Store solution path with cheapest cost known so far.

Early Pruning:

❑ Prerequisites

– The cost function assigns cost values to solution bases, not only solution paths.
– The cost of a solution base is an optimistic estimate of the cheapest solution cost that

can be achieved by completing the solution base.

➜ Continue search only until the costs of solution bases exceed the currently optimum cost.
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State Space Search
Basic-Opt-OR(s, successors, ⋆, cost) // Basic-OR for optimization problems.

1. copt = ∞; s.parent = null; add(s, OPEN); // Assuming s is no goal node.

2. LOOP

3. IF (OPEN == ∅) // No further solution bases to consider.
THEN
IF (copt < ∞) THEN RETURN(nopt); // Solution path found.
RETURN(Fail); // No solution path found.

ENDIF

4. n = choose(OPEN); remove(n, OPEN); add(n, CLOSED);

5. FOREACH n′ IN successors(n) DO // Expand n.
n′.parent = n; // Extend solution base represented by n.
IF ⋆(n′) // Solution base n′ is evaluated.
THEN
IF (cost(n′) < copt)
THEN

copt = cost(n′); nopt = n′; // n′ better solution.
ENDIF
add(n′, CLOSED); // Goal nodes are terminal nodes.

ELSE
add(n′, OPEN);

ENDIF;
ENDDO

6. ENDLOOP
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Remarks:

❑ If we have no means to estimate cost values for solution bases or if the cost estimation is not
optimistic, the nesting of the conditional statements in the FOREACH loop has to be changed.
Then we have no early pruning. The algorithm stops only if the set of solution bases in OPEN
is exhausted.

❑ Depending on the problem, the Basic-Opt-OR search may not terminate, e.g., for infinite
graphs with no optimum solution path or for graphs with an infinite number of solution bases
with costs lower than the optimum solution cost.

❑ The optimistic cost estimation is crucial for the correctness of Basic-Opt-OR search: If the
cheapest solution cost that can be achieved by completing the solution base is overestimated
we might miss an optimum cost solution path.
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State Space Search
Optimization Problem Example

Problem Setting and Task:

❑ Given a matrix of non-negative numbers.
❑ Determine a column with minimum column sum in the matrix.
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State Space Search
Optimization Problem Example

Problem Setting and Task:

❑ Given a matrix of non-negative numbers.
❑ Determine a column with minimum column sum in the matrix.

Modeling as State Space Search Problem:

❑ Cells of the matrix correspond to nodes (i.e., states) in a state space graph.

❑ Cells connect by an edge to a cell in the next row within the same column.

❑ Cells in the last row are goal nodes.

❑ A start node s connects to the nodes for cells in the first row.

❑ The numbers of the matrix cells are modeled as weights of the incoming
edges.

❑ Cost of a solution base / solution path is sum of the values of the matrix cells
traversed, i.e., sum of the edge cost values in the back-pointer path.
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State Space Search
Optimization Problem Example (continued)

Modeling as State Space Search Problem
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State Space Search
Optimization Problem Example (continued)

Modeling as State Space Search Problem

8     3      6     7

6     5      9     8
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Q What heuristic can be used to assign cost values to solution bases?

The quality (power) of a heuristic defines the pruning gain: The earlier we find a
cheap solution the larger are the search effort savings.
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