
Chapter S:II (continued)

II. Basic Search Algorithms
❑ Systematic Search
❑ Graph Theory Basics
❑ State Space Search
❑ Depth-First Search
❑ Backtracking
❑ Breadth-First Search
❑ Uniform-Cost Search

❑ AND-OR Graph Basics
❑ Depth-First Search of AND-OR Graphs
❑ AND-OR Graph Search Basics
❑ AND-OR Graph Search
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Depth-First Search (DFS)
Depth-first search is an uninformed (systematic) search strategy.

DFS characteristics:

❑ Nodes at deeper levels in G are preferred.

A solution base that is most complete (= longest) is preferred.

❑ The smallest, indivisible (= atomic) step is
:::::::
node

:::::::::::::::::
expansion:

If a node is explored (= reached), all of its direct successors n1, . . . , nk are
generated at once. Among the n1, . . . , nk one node is chosen for expansion in
the next step.

❑ If node expansion comes to an end, backtracking is invoked:

Node expansion is continued with the deepest node that has non-explored
alternatives.

❑ Terminates (on finite, cyclefree graphs) with a solution, if one exists.

Caveat: Cyclic paths or infinite paths cannot be handled properly.
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Remarks:

❑ Operationalization of DFS:
The OPEN list is organized as a stack, i.e., nodes are explored in a LIFO (last in first out)
manner. [OPEN list in BFS] [

:::::::
OPEN

::::
list

::
in

::::
BF]

Backtracking is a consequence of the organization of solution bases in OPEN; it is not the
result of an active checking of solution bases.

❑ Depth of a node is defined with respect to the traversal tree: depth(n) is the length of the
back-pointer path for n in the traversal tree. A most recently generated node in DFS will
therefore be a deepest node in the traversal tree.
Depth of a state s′ in the state-space G can only be defined as minimum distance between
start state s and s′.
Therefore, the traversal tree may contain several nodes referencing the same state s′ but with
different depth values for the nodes in the traversal tree.
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Depth-First Search
Specification of DFS Algorithm Family

Algorithm: DFS
Input: s. Start node representing the initial state (problem) in G.

successors(n). Returns new instances of nodes for the successor states in G.
⋆(n). Predicate that is True if n represents a goal state in G.

constraints(n). Predicate that is True if path repr. by n satisfies solution constraints.

⊥ (n). Predicate that is True if n is a dead end.

maxDepth. Depth-bound for nodes in G to consider (maxDepth ≥ 0).
visitedDepth. Returns maximum depth for nodes in G observed (call by reference).

Output: A node γ representing a solution path for s in G or the symbol Fail .

Specialization of
::::::::::::::
Basic-OR.

Variants:
Basic-DFS: a minimal DFS version.
DFS: DFS with dead end recognition.
DL-DFS: DFS with fixed depth limit.
ID-DFS: an iterative deepening framework for DFS.

Compare: BT versions and BFS variants.

General Information: [Wikipedia]
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Depth-First Search
Core Version of DFS

❑ Please note that OPEN is organized as a stack, indicated by functions push(.) and pop(.).
❑ Memory consumption will be controlled explicitly using the function cleanup_closed().

Basic-DFS(s, successors, ⋆, constraints) // A deterministic variant of Basic-OR.

0. s.parent = null;
IF ⋆(s) THEN IF constraints(s) THEN RETURN(s); // Check path repr. by s.

1. push(s, OPEN); // Add node s at the front of OPEN.

2. LOOP

3. IF (OPEN == ∅) THEN RETURN(Fail);

4. n = pop(OPEN); add(n, CLOSED); // Get + remove front node n from OPEN.

5. FOREACH n′ IN successors(n) DO // Expand n.
n′.parent = n;
IF ⋆(n′) THEN // Check whether n′ represents a solution path.
IF constraints(n′) THEN RETURN(n′);

push(n′, OPEN); // Add node n′ at the front of OPEN.
ENDDO

IF (successors(n) == ∅) THEN cleanup_closed(); // Remove dead ends.

6. ENDLOOP
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Remarks:

❑ Function cleanup_closed deletes nodes from CLOSED that are no longer required:

A node that cannot become part of a solution path can be safely discarded.

From algorithm
::::::::::::::
Basic-OR we know already that only solution bases represented by nodes in

OPEN can become part of a solution path. Therefore, all nodes in the traversal tree that are in
CLOSED and have no descendant in OPEN can be safely discarded. Nodes of this type are:

1. Nodes n′ that fulfill ⊥ (n′) (= nodes that are dead ends) can be discarded. (They will
never enter OPEN, see DFS).

2. Nodes in CLOSED without known successors (because the state is terminal or because
of previous cleanup_closed calls) can be safely discarded.

In order to find nodes of these types in CLOSED a reference count can be used.

❑ In depth-first search, the CLOSED list forms a path from s to the most recently expanded
node with direct successors in OPEN.

❑ The node expansion under Step 5 exhibits the uninformed nature of DFS. A kind of “partial
informedness” is achieved by introducing a heuristic h to sort among the direct successors:

5. FOREACH n′ IN sort(successors(n), h) DO // Expand n.
s.parent = null;
...
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Depth-First Search
Example: 4-Queens Problem
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Depth-First Search
Example: 4-Queens Problem (continued)
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Depth-First Search
Example: 4-Queens Problem (continued)
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Depth-First Search
Example: 4-Queens Problem (continued)

DFS node processing sequence:
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Depth-First Search
Search Depth

For graphs that are not trees, the search depth is not naturally defined:

search depth
1

2

0

D
istance from

 root node

1

s

2 6

4 53

In the search space graph G depth of a node n is defined as minimum length of a
path from s to n.

DFS also uses this definition, but with respect to its finite knowledge about G which
is a tree rooted in s.
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Remarks:

❑ The DFS paradigm requires that a node will not be expanded as long as a deeper node is on
the OPEN list.

❑ Q. How to define the depth of a node n?

A. Ideally, depth(n′) = 1 + depth(n), where n is the highest parent node of n′ in the search
space graph G (= parent node that is nearest to s). Together with the base case depth(s) = 0
we have, depth of n is minimum length of a path from s to n.

DFS stores a finite tree rooted in s, which is a tree-unfolding of the part of the explored
subgraph of G. Each instantiation of a node n has a depth in that tree, which is the length of
the unique path from s to n in that tree.
As for DFS it is impossible to compute the depth of a node n in G (see illustration), DFS uses
the depth of n in its stored tree. The DFS paradigm is then realized by the LIFO principle
used for OPEN.
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Depth-First Search
Discussion

Basic-DFS is complete for finite state-space graphs G without cycles.

DFS issue:

❑ Search may run deeper and deeper and follow some fruitless path.

Workaround 1:

❑ Install a depth-bound.

❑ When reaching the bound, trigger a jump (backtrack) to the deepest
alternative not violating this bound.

Workaround 2:

❑ Check for dead ends with a “forecasting” dead end predicate ⊥ (n).

❑ If ⊥ (n) = True, trigger a jump (backtrack) to the deepest alternative not
violating the depth bound.
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Depth-First Search
Depth-limited DFS

A depth limit maxDepth helps to avoid infinite paths, a call by reference parameter allows the
interpretation of negative results ((visitedDepth < maxDepth) ⇒ no solution available).

DL-DFS(s, successors, ⋆, constraints,maxDepth, visitedDepth) // Extends Basic-DFS.

1. s.parent = null; push(s, OPEN); depth(s) = 0; visitedDepth = 0;

2. LOOP

3. IF (OPEN == ∅) THEN RETURN(Fail);
4. n = pop(OPEN); add(n, CLOSED);

IF (depth(n) > visitedDepth) THEN visitedDepth = depth(n);
5. IF (depth(n) >= maxDepth) // Do not expand nodes of highest depth.

THEN
cleanup_closed(); // Remove unref. nodes from CLOSED, e.g., n.

ELSE
FOREACH n′ IN successors(n) DO // Expand n.

n′.parent = n;
depth(n′) = depth(n) + 1;
IF ⋆(n′) THEN IF constraints(n′) THEN RETURN(n′);

push(n′, OPEN); // Add node at the front of OPEN.

ENDDO
IF (successors(n) == ∅) THEN cleanup_closed(); // Remove dead ends.

ENDIF

6. ENDLOOP
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Remarks:

❑ Reaching the depth bound at node n is treated as if n had no successors.

❑ Using a depth bound means that completeness of DL-DFS can be violated even for finite
graphs without cycles. The reason is that the depth bound could be chosen less than
minimum solution path length for s.

❑ Even if short solution paths for s are available the runtime of DL-DFS can be exponential in
the size of G, since many long non-solution paths can be available. Since the order on which
solution bases will be considered is not known, it is advisable to increase the bound gradually
instead of using a high depth bound directly (see ID-DFS,).
Example:

mk

'nk

nkmk-1m2

   'n2

n2m1

   'n1

n1m0

γ

s

Option 1 Option 2 Option k

Gk

We assume, γ is the only goal state and successors of s are processed in the order m0, γ.
k independent options for "bottom" and "top" provide 2k + 1 different paths in Gk.

❑ Q. What is the asymptotic space requirement of DFS with depth bound?
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Depth-First Search
Iterative Deepening Framework using DL-DFS

❑ If there is a chance for a short solution, do not call DFS with the maximal depth bound.

Algorithm: ID-DFS (Iterative-Deepening DFS) (Compare DFS family,
::::::::
ID-A∗, [Wikipedia].)

Input: s. Start node representing the initial state (problem) in G.
successors(n). Returns new instances of nodes for the successor states in G.
⋆(n). Predicate that is True if n represents a goal state in G.
constraints(n). Predicate that is True if path repr. by n satisfies solution constraints.
initDepth. Initial depth bound.
maxDepthBound . Maximum depth bound to consider.

Output: A node γ representing a solution path for s in G or the symbol Fail .

ID-DFS(s, successors, ⋆, constraints, initDepth,maxDepthBound)

1. curDepth = initDepth; visitedDepth = 0;

2. LOOP

3. IF ( curDepth > maxDepth ) THEN RETURN(Fail);
4. result = DL-DFS(s, successors, ⋆, constraints, curDepth, visitedDepth);

// visitedDepth is a call by reference parameter.

IF ( result != Fail ) THEN RETURN(result);
IF ( visitedDepth < curDepth ) THEN RETURN(Fail); // result is reliable.

curDepth = increment(curDepth); // Increase curDepth reasonably.

5. ENDLOOP
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Depth-First Search
DFS with Pruning

Information about solvability of a rest problem (state) represented by a node allows for pruning.
A domain-specific predicate ⊥ (n) (dead end function) serves this purpose.

DFS(s, successors, ⋆, constraints,⊥) // Extends Basic-DFS

1. s.parent = null; push(s, OPEN);
2. LOOP

3. IF (OPEN == ∅) THEN RETURN(Fail);
4. n = pop(OPEN); add(n, CLOSED);
5. FOREACH n′ IN successors(n) DO // Expand n.

n′.parent = n;
IF ⋆(n′) THEN IF constraints(n′) THEN RETURN(n′);

IF ⊥ (n′) // Detect and remove dead ends in G.
THEN

add(n′, CLOSED);
cleanup_closed(); // Remove unref. nodes from CLOSED, e.g., n′.

ELSE
push(n′, OPEN); // Add node at the front of OPEN.

ENDIF

ENDDO
IF (successors(n) == ∅) THEN cleanup_closed(); // Remove dead ends.

6. ENDLOOP
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Remarks:

❑ Function ⊥ (n) is part of the problem definition and not part of the search algorithm. We
assume that ⊥ (n) is computable.

❑ For each node n on a solution path we have ⊥ (n) = False

❑ Example definition of a very simple dead end predicate (its look-ahead is 0) :

⊥ (n) = True ⇔ ( ⋆ (n) = False ∧ successors(n) = ∅ )

❑ Whether a depth bound is reached, could easily be tested in ⊥ (n) as well. But then a depth
bound becomes part of the problem setting: "Find a solution path with at most length k."
Instead, we see the depth bound as part of the search strategy that excludes solution bases
longer than k from further exploration.
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Depth-First Search
Discussion (continued)

Depth-first search can be the favorite strategy in certain situations:

(a) We are given plenty of equivalent solutions.

(b) Dead ends can be recognized early (i.e., with a considerable look-ahead).

(c) There are no cyclic or infinite paths resp. cyclic or infinite paths can be
avoided.

Corollary 12 (Termination and Completeness of Basic-DFS for Finite Graphs without Cycles)

Basic-DFS terminates and is complete for finite graphs G without cycles that have
the Prop0(G)

::::::::::::::::
properties.

(See
::::::::::::::::::::::
completeness

:::
of

::::::::::::::::
Basic-OR.)
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Remarks (continued) :

❑ Q. How to avoid the multiple expansion of a node, i.e., the expansion of allegedly different
nodes all of which represent the same state (recall the 8-Puzzle problem)?

A. Multiple nodes referencing the same state can be available at the same time in the
traversal tree stored by DFS. Each of these instantiations represents a different solution base.
It makes sense to avoid multiple expansions of a node if constraints for solution paths are not
too restrictive. This is for example the case if ⋆(n) only checks, whether n is a goal node.

Then a solution base represented by one instantiation of n can be completed to a solution
path if and only if a solution base represented by some other instantiation of n can be
completed to a solution path.

In such cases, some of the multiple extensions can be avoided by checking (e.g., in ⊥ (n) for
the case of cycles) whether a node referencing the same state as n is currently available in
OPEN or CLOSED.

If multiple nodes referencing the same state can be avoided (no constraints and removing
duplicates), the resulting algorithm terminates and is complete for finite graphs G with
Prop0(G).

To completely eliminate multiple expansions, all nodes that have ever been expanded must
be stored, which sweeps off the memory advantage of DFS.
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Depth-First Search
Example: DFS for Optimization (see

::::::::::::::
Basic-OR

:::::
for

::::::::::::::::::::
Optimization)

Determine the minimum column sum of a matrix:

8     3      6     7

6     5      9     8

5     3      7     8

1     2      4     6

S:II-102 Basic Search Algorithms © Stein/Lettmann/Hagen 1998–2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search1.pdf#generic-search-for-optimization


Depth-First Search
Example: DFS for Optimization (see

::::::::::::::
Basic-OR

:::::
for

::::::::::::::::::::
Optimization)

Determine the minimum column sum of a matrix:
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8     3      6     7

6     5      9     8

5     3      7     8

1     2      4     6
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Depth-First Search
Example: DFS for Optimization (see

::::::::::::::
Basic-OR

:::::
for

::::::::::::::::::::
Optimization)

Determine the minimum column sum of a matrix:

8

6

5

1

20

s
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6 (black)
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3 6 7

5 9 8

3

2

13

15 15

8     3      6     7

6     5      9     8

5     3      7     8

1     2      4     6

Prerequisite for pruning:

Objective function column sum increases monotonically with the depth of a path.

Solution bases exceeding cost of a cheapest solution found so far can be pruned.
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Backtracking (BT)
Backtracking is a variant of depth-first search.

BT characteristics:

❑ The LIFO principle is applied to
:::::::::::::::::::::::::
node generation — as opposed to

::::::::::::::::::::::::
node expansion in DFS.
(I.e., the illustrated difference in time of node generation and time of node processing

disappears.)

❑ When selecting a node n for exploration, only one of its direct successors n′ is
generated.

❑ If n′ fulfills the dead end criterion (i.e., ⊥ (n′) = True), backtracking is invoked
and search is continued with the next non-expanded successor of n.
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Remarks:

❑ The operationalization of BT can happen elegantly via recursion. Then, the OPEN list is
realized as the stack of recursive function calls (i.e., the data structure is provided directly by
programming language and operating system means).
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Backtracking
Algorithm: BT
Input: s. Start node representing the initial state (problem) in G.

next_successor(n). Returns a new instance of a node for the next succ. in G.
⋆(n). Predicate that is True if n represents a goal state in G.
constraints(n). Predicate that is True if path repr. by n satisfies solution constraints.

Output: A node γ representing a solution path for s in G or the symbol Fail .

BT(s,next_successor , ⋆, constraints) // Recursive version of Basic-DFS.

1. s.parent = null; push(s, OPEN); // Assuming s represents no solution path.

2. LOOP

3. IF (OPEN == ∅) THEN RETURN(Fail);
4. n = top(OPEN); // Get front node n from OPEN, no removing.

5. n′ = next_successor(n); // Get a next successor of n.
IF (n′ == null)
THEN

pop(OPEN); remove(n); // Remove n from OPEN and free memory.
ELSE

n′.parent = n;

IF ⋆(n′) THEN IF constraints(s) THEN RETURN(n′);
push(n′, OPEN);

ENDIF

6. ENDLOOP
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Backtracking
Discussion

BT issue:

❑ Heuristic information to sort among successors is not exploited.

Workarounds:

❑ Generate successors temporarily.

❑ Assess operators — instead of the effect of operator application.

Backtracking can be the favorite strategy if we are given a large number of
applicable operators.
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Backtracking
Discussion (continued)

Backtracking versus depth-first search:

❑ Backtracking requires only an OPEN list, which serves as both LIFO stack
and traversal path storage.

DFS employs an OPEN list to maintain alternatives and a CLOSED list to
support the decision which nodes to discard. So, CLOSED stores the current
path (aka. traversal path).

❑ Even higher storage economy compared to DFS:

– BT will store only one successor at a time.

– BT will never generate nodes to the "right" of a solution path.

– BT will discard a node as soon as it is known to be expanded.
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Backtracking
Monotone Backtracking: 8-Queens Problem
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Backtracking
Monotone Backtracking: 8-Queens Problem (continued)
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Backtracking
Monotone Backtracking: 8-Queens Problem (continued)
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Backtracking
Non-Monotone Backtracking: 8-Queens Problem

The 8-Queens problem is handled ineffectively by monotone backtracking.

➜ Determine so-called “root causes” aka. “First Principles”.

➜ Label the attacked cells by the row number of the oldest queen:
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Backtracking
Non-Monotone Backtracking: Generic

On reaching a dead end jump back to the alleged cause of the problem.

Concepts:

❑ dependency-directed backtracking

❑ knowledge-based backtracking

Challenges:

❑ Book-keeping of cause-effect chains to identify the root cause.

❑ Guaranteeing the principles of systematic search.
Efficient maintenance of visited and non-visited nodes. Recall that we no
longer apply a monotone schedule.

❑ Efficient reconstruction of distant states in the search space.
Keyword: Stack Unrolling
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Remarks:

❑ Dependency-directed backtracking:
If we describe states (remaining problems) by facts "A queen is placed on cell G4.", "There is
a threat for cell C8." and rules "If there is a queen placed on a cell, there is no threat for this
cell.", then placing a queen allows the derivation of additional facts. Derived facts depend on
facts used in the derivation. Backtracking can analyze these dependencies.
Knowledge-based backtracking:
Each step in the search can be seen as decision. There is additional knowledge available,
that helps in detecting a decision that has to be revised.

❑ The outlined concepts and challenges lead to the research field of truth maintenance
systems (TMS), which gained some popularity in the 1980s.

❑ Well-known TMS approaches:

– justification-based truth maintenance system (JTMS)
– assumption-based truth maintenance system (ATMS)
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Breadth-First Search (BFS)
Breadth-first search is an uninformed, systematic search strategy.

BFS characteristics:

❑ Nodes at upper levels in G are preferred.

❑ Node expansion happens in levels of equal depth.

❑ Terminates (on locally finite graphs) with a solution, if one exists.

❑ Determines a goal node that is closest to the start node s, measured in the
number of edges on a solution path.

S:II-116 Basic Search Algorithms © Stein/Lettmann/Hagen 1998–2021



Remarks:

❑ Operationalization of BFS:
The OPEN list is organized as a queue (i.e., nodes are explored in a FIFO (first in first out)
manner). [OPEN list in DFS] [

:::::::
OPEN

::::
list

::
in

::::
BF]

❑ By enqueuing newly generated successors in OPEN (insertion at the tail) instead of pushing
them (insertion at the head), DFS is turned into BFS.
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Breadth-First Search
Specification of BFS Algorithm Family

Algorithm: BFS
Input: s. Start node representing the initial state (problem) in G.

successors(n). Returns new instances of nodes for the successor states in G.
⋆(n). Predicate that is True if n represents a goal state in G.

constraints(n). Predicate that is True if path repr. by n satisfies solution constraints.

⊥ (n). Predicate that is True if n is a dead end.

maxDepth. Depth-bound for nodes in G to consider (maxDepth ≥ 0).
visitedDepth. Returns maximum depth for nodes in G observed (call by reference).

Output: A node γ representing a solution path for s in G or the symbol Fail .

Specialization of
::::::::::::::
Basic-OR.

Variants:
Basic-BFS: a minimal BFS version.
BFS: BFS with dead end recognition.
DL-BFS: BFS with fixed depth limit.

Compare: DFS variants.

General Information: [Wikipedia]
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Breadth-First Search
Core Version of BFS

❑ Please note that OPEN is organized as a queue, indicated by functions enqueue(.) and
front(.).

❑ Memory consumption will be controlled explicitly using the function cleanup_closed().

Basic-BFS(s, successors, ⋆, constraints) // A deterministic variant of Basic-OR.

0. s.parent = null;
IF ⋆(s) THEN IF constraints(s) THEN RETURN(s); // Check path repr. by s.

1. enqueue(s, OPEN); // Add node s at the end of OPEN.

2. LOOP

3. IF (OPEN == ∅) THEN RETURN(Fail);

4. n = front(OPEN); remove(n, OPEN); add(n, CLOSED); //Getfrontnodefrom OPEN.

5. FOREACH n′ IN successors(n) DO // Expand n.
n′.parent = n;
IF ⋆(n′) THEN // Check whether n′ represents a solution path.
IF constraints(n′) THEN RETURN(n′);

enqueue(n′, OPEN); // Add node n′ at the end of OPEN.
ENDDO

IF (successors(n) == ∅) THEN cleanup_closed(); // Remove dead ends.

6. ENDLOOP
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Breadth-First Search
Example: 4-Queens Problem

BFS node processing sequence:

a

b

c d

e

f

g

h

i

j k

Q
Q

i

Q
Q

x      Dead end

x      Goal

x      OPEN

x      CLOSED
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Breadth-First Search
Example: 4-Queens Problem

BFS node processing sequence:

a

b

c d

e

f

g

h

i

j k

Q
Q

i

Q
Q

x      Dead end

x      Goal

x      OPEN

x      CLOSED

Compare to the DFS strategy:

b

e

f

g

h

k

i

j
a

c d
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Breadth-First Search
Discussion

Basic-BFS is complete for finite state-space graphs G without cycles.

BFS issue:

❑ Unlike depth-first search, BFS has to store the explored part of the graph
completely. Why?

DFS workarounds depth-bound and dead-end function can also limit the memory
usage in BFS.
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Breadth-First Search
Discussion

Basic-BFS is complete for finite state-space graphs G without cycles.

BFS issue:

❑ Unlike depth-first search, BFS has to store the explored part of the graph
completely. Why?

DFS workarounds depth-bound and dead-end function can also limit the memory
usage in BFS.

Nevertheless, breadth-first search can be the favorite strategy in certain situations:

x      Dead end

x      Goal

x      OPEN

x      CLOSED
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Breadth-First Search
BFS with Pruning

Information about solvability of a rest problem (state) represented by a node allows for pruning.
A domain-specific predicate ⊥ (n) (dead end function) serves this purpose.

BFS(s, successors, ⋆, constraints,⊥) // Extends Basic-BFS.

1. s.parent = null; enqueue(s, OPEN);

2. LOOP

3. IF (OPEN == ∅) THEN RETURN(Fail);

4. n = front(OPEN); remove(n, OPEN); add(n, CLOSED);

5. FOREACH n′ IN successors(n) DO // Expand n.
n′.parent = n;
IF ⋆(n′) THEN IF constraints(n′) THEN RETURN(n′);

IF ⊥ (n′) // Detect and remove dead ends in G.
THEN

add(n′, CLOSED);
cleanup_closed(); // Remove unref. nodes from CLOSED, e.g., n′.

ELSE
enqueue(n′, OPEN); // Add node n′ at the end of OPEN.

ENDIF

ENDDO

IF (successors(n) == ∅) THEN cleanup_closed(); // Remove dead ends.

6. ENDLOOP
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Breadth-First Search
Depth-limited BFS

A depth limit maxDepth helps to avoid running out of memory, a call by reference parameter allows
the interpretation of negative results ((visitedDepth < maxDepth) ⇒ no solution available).

DL-BFS(s, successors, ⋆, constraints,maxDepth, visitedDepth) // Extends Basic-BFS.

1. s.parent = null; enqueue(s, OPEN); depth(s) = 0; visitedDepth = 0;

2. LOOP

3. IF (OPEN == ∅) THEN RETURN(Fail);
4. n = front(OPEN); remove(n, OPEN); add(n, CLOSED);

IF (depth(n) > visitedDepth) THEN visitedDepth = depth(n);
5. IF (depth(n) >= maxDepth) // Do not expand nodes of highest depth.

THEN
cleanup_closed(); // Remove unref. nodes from CLOSED, e.g., n.

ELSE
FOREACH n′ IN successors(n) DO // Expand n.

n′.parent = n;
depth(n′) = depth(n) + 1;
IF ⋆(n′) THEN IF constraints(n′) THEN RETURN(n′);

enqueue(n′, OPEN); // Add node at the front of OPEN.

ENDDO
IF (successors(n) == ∅) THEN cleanup_closed(); // Remove dead ends.

ENDIF

6. ENDLOOP
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Breadth-First Search
Corollary 13 (Termiantion of Basic-BFS for Finite Graphs without Cycles)

Basic-BFS terminates for finite cycle-free graphs G with Prop0(G)
::::::::::::::::
properties.

(See termination and completeness of Basic-DFS.)

Lemma 14 (Completeness of Basic-BFS)

Basic-BFS is complete for graphs G with Prop0(G)
:::::::::::::::
properties.

Proof (sketch)

1. Proof by induction:
When a node on OPEN represents a solution base of length k + 2 for some k ∈ N ∪ {0}, then
all solution bases for s of at most length k have been considered by Basic-BFS.

2. Let Ps−γ be a solution path in G of length k. Since G has Prop0(G), the set of solution bases
for s with a length at most k + 1 is finite.

3. At each point in time an initial part of Ps−γ is available as a solution base represented by a
node in OPEN.

4. Since in each run through the main loop a node (solution base) is removed from OPEN,
Basic-BFS must terminate and return a solution.
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Breadth-First Search
Example: BFS for Optimization (see

::::::::::::::
Basic-OR and DFS for Optimization)

Determine the minimum column sum of a matrix:

s

8 3 6 7

8     3      6     7

6     5      9     8

5     3      7     8

1     2      4     6
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Breadth-First Search
Example: BFS for Optimization (see

::::::::::::::
Basic-OR and DFS for Optimization)

Determine the minimum column sum of a matrix:

s

8 3 6 7

8     3      6     7

6     5      9     8

5     3      7     8

1     2      4     6

Comparison of BFS and DFS for optimization with pruning:

s

8

6

3 6 7

5 9 8

3

2

5

1

7 8

8 3 6 7

14 8 15 15

11

13

19

20

23 24

s

6

5

1

5 9 8

3

2

8 3 6 7

1320

15 15

edge cost
solution base cost

6 (black)
6 (blue)

BFS DFS

Prerequisite for pruning:
Objective function column sum increases monotonically with the depth of a path.

Solution bases exceeding cost of a cheapest solution found so far can be pruned.
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