
Chapter S:III

III. Informed Search
❑ Best-First Search Basics
❑ Best-First Search Algorithms
❑ Cost Functions for State-Space Graphs
❑ Evaluation of State-Space Graphs
❑ Algorithm A*

❑ BF* Variants
❑ Hybrid Strategies

❑ Best-First Search for AND-OR Graphs
❑ Relation between GBF and BF
❑ Cost Functions for AND-OR Graphs
❑ Evaluation of AND-OR Graphs

S:III-161 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Principles of Algorithm GBF [

:::
BF

:::::::::::
principles]

Properties of Problem-Reduction Graphs

1. G is an implicitly defined directed AND-OR graph.

2. G is acyclic and locally finite.

When searching problem-reduction graphs with the Algorithm GBF,

❑ the underlying problem-reduction graph G is assumed to be acyclic,

❑ f1 evaluates solution bases H,

❑ a most promising solution base minimizes f1,

❑ a most promising solution base is searched among all solution bases
maintained by GBF,

❑ solution bases maintained by GBF are solution bases for s in the explicit part
Ge of G with tip nodes in OPEN,

❑ f2 returns a most informative node in a solution base.

S:III-162 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf1.pdf#algorithm-bf-principles

Best-First Search for AND-OR Graphs
Principles of Algorithm GBF [

:::
BF

:::::::::::
principles]

Properties of Problem-Reduction Graphs

1. G is an implicitly defined directed AND-OR graph.

2. G is acyclic and locally finite.

When searching problem-reduction graphs with the Algorithm GBF,

❑ the underlying problem-reduction graph G is assumed to be acyclic,

❑ f1 evaluates solution bases H,

❑ a most promising solution base minimizes f1,

❑ a most promising solution base is searched among all solution bases
maintained by GBF,

❑ solution bases maintained by GBF are solution bases for s in the explicit part
Ge of G with tip nodes in OPEN,

❑ f2 returns a most informative node in a solution base.

S:III-163 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf1.pdf#algorithm-bf-principles

Best-First Search for AND-OR Graphs
Principles of Algorithm GBF [

:::
BF

:::::::::::
principles]

Properties of Problem-Reduction Graphs

1. G is an implicitly defined directed AND-OR graph.

2. G is acyclic and locally finite.

When searching problem-reduction graphs with the Algorithm GBF,

❑ the underlying problem-reduction graph G is assumed to be acyclic,

❑ f1 evaluates solution bases H,

❑ a most promising solution base minimizes f1,

❑ a most promising solution base is searched among all solution bases
maintained by GBF,

❑ solution bases maintained by GBF are solution bases for s in the explicit part
Ge of G with tip nodes in OPEN,

❑ f2 returns a most informative node in a solution base.

S:III-164 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf1.pdf#algorithm-bf-principles

Best-First Search for AND-OR Graphs
Principles of Algorithm GBF [

:::
BF

:::::::::::
principles]

Properties of Problem-Reduction Graphs

1. G is an implicitly defined directed AND-OR graph.

2. G is acyclic and locally finite.

When searching problem-reduction graphs with the Algorithm GBF,

❑ the underlying problem-reduction graph G is assumed to be acyclic,

❑ f1 evaluates solution bases H,

❑ a most promising solution base minimizes f1,

❑ a most promising solution base is searched among all solution bases
maintained by GBF,

❑ solution bases maintained by GBF are solution bases for s in the explicit part
Ge of G with tip nodes in OPEN,

❑ f2 returns a most informative node in a solution base.

S:III-165 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf1.pdf#algorithm-bf-principles

Best-First Search for AND-OR Graphs
Principles of Algorithm GBF [

:::
BF

:::::::::::
principles]

Properties of Problem-Reduction Graphs

1. G is an implicitly defined directed AND-OR graph.

2. G is acyclic and locally finite.

When searching problem-reduction graphs with the Algorithm GBF,

❑ the underlying problem-reduction graph G is assumed to be acyclic,

❑ f1 evaluates solution bases H,

❑ a most promising solution base minimizes f1,

❑ a most promising solution base is searched among all solution bases
maintained by GBF,

❑ solution bases maintained by GBF are solution bases for s in the explicit part
Ge of G with tip nodes in OPEN,

❑ f2 returns a most informative node in a solution base.

S:III-166 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf1.pdf#algorithm-bf-principles

Remarks:

❑ Again, G denotes the explored part of the search space graph.

❑ When searching AND-OR graphs with the algorithm GBF, only solution bases H need to be
considered that have not been considered so far. I.e., only solution bases H with leaf nodes
that are goal nodes or nodes in OPEN and inner nodes in CLOSED are considered.

❑ In an AND-OR graph, a node may be part of several solution bases.

❑ Usually, the evaluation function f1(H) is based on a heuristic h(n).

❑ h(n) estimates the optimum cost of solution graphs for the rest problem associated with a
node n. Ideally, h(n) should consider the probability of the solvability of the problem at
node n.

❑ Compared to f2(H), the evaluation function f1(H) is usually more important.

❑ Searching AND-OR graphs with cycles is intricate. Note that the algorithms presented by
Martelli and Montanari [1973, 1978], Nilsson [1980], or Pearl [1984] presume graphs without
cycles. In the following, we will restrict to acyclic graphs as well.

❑ In the context of Markov Decision Processes, MDP, and advanced planning algorithms
researchers have dealt with AND-OR graphs that contain cycles. [Bonet/Geffner 2005]

S:III-167 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs

Algorithm: GBF
Input: s. Start node representing the initial problem.

successors(n). Returns the successors of node n.
f1(H). Evaluation function for solution bases.
f2(H). Selection function for OPEN-nodes in a solution base.

Output: A solution graph or the symbol Fail .

Subroutines: is_solved(n). Predicate that is True if n is labeled "solved" or n is a goal node.
propagate_label(n). Function that propagates node label "solved" along backpointers.

S:III-168 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
GBF(s, successors, is_solved , f1, f2)

1. insert(s, OPEN); add_node(s,Ge); // Ge is the explored part of G.
2. LOOP
3. IF (OPEN = ∅) THEN RETURN(Fail);

4.a H = min_solution_base(s,Ge, f1); // Find most prom. sol. base in Ge.
4.b n = min(OPEN ∩H, f2); // Find most informative non-goal node in H.

remove(n, OPEN); push(n, CLOSED);
5. FOREACH n′ IN successors(n) DO

IF (n′ ∈ OPEN OR n′ ∈ CLOSED) // Instance of n′ seen before?
THEN // Use old instance of n′ instead.

n′ = retrieve(n′, OPEN ∪ CLOSED);
ELSE // n′ encodes an instance of a new state.

insert(n′, OPEN); add_node(n′, Ge);
ENDIF
add_backpointer(n′, n); add_edge((n, n′), Ge);

IF is_solved(n′) // Is n′ goal node or labeled solvable?
THEN

propagate_label(n′);
IF is_solved(s) THEN RETURN(compute_solution_graph(Ge));

ENDIF

ENDDO
6. ENDLOOP

S:III-169 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
GBF(s, successors, is_solved , f1, f2)

1. insert(s, OPEN); add_node(s,Ge); // Ge is the explored part of G.
2. LOOP
3. IF (OPEN = ∅) THEN RETURN(Fail);

4.a H = min_solution_base(s,Ge, f1); // Find most prom. sol. base in Ge.
4.b n = min(OPEN ∩H, f2); // Find most informative non-goal node in H.

remove(n, OPEN); push(n, CLOSED);
5. FOREACH n′ IN successors(n) DO

IF (n′ ∈ OPEN OR n′ ∈ CLOSED) // Instance of n′ seen before?
THEN // Use old instance of n′ instead.

n′ = retrieve(n′, OPEN ∪ CLOSED);
ELSE // n′ encodes an instance of a new state.

insert(n′, OPEN); add_node(n′, Ge);
ENDIF
add_backpointer(n′, n); add_edge((n, n′), Ge);

IF is_solved(n′) // Is n′ goal node or labeled solvable?
THEN

propagate_label(n′);
IF is_solved(s) THEN RETURN(compute_solution_graph(Ge));

ENDIF

ENDDO
6. ENDLOOP

S:III-170 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
GBF(s, successors, is_solved , f1, f2)

1. insert(s, OPEN); add_node(s,Ge); // Ge is the explored part of G.
2. LOOP
3. IF (OPEN = ∅) THEN RETURN(Fail);

4.a H = min_solution_base(s,Ge, f1); // Find most prom. sol. base in Ge.
4.b n = min(OPEN ∩H, f2); // Find most informative non-goal node in H.

remove(n, OPEN); push(n, CLOSED);
5. FOREACH n′ IN successors(n) DO

IF (n′ ∈ OPEN OR n′ ∈ CLOSED) // Instance of n′ seen before?
THEN // Use old instance of n′ instead.

n′ = retrieve(n′, OPEN ∪ CLOSED);
ELSE // n′ encodes an instance of a new state.

insert(n′, OPEN); add_node(n′, Ge);
ENDIF
add_backpointer(n′, n); add_edge((n, n′), Ge);

IF is_solved(n′) // Is n′ goal node or labeled solvable?
THEN

propagate_label(n′);
IF is_solved(s) THEN RETURN(compute_solution_graph(Ge));

ENDIF

ENDDO
6. ENDLOOP

S:III-171 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs [
:::::::::::::::::::::
Basic_AND-OR,

::::
BF,

:::::
BF*, GBF*]

GBF(s, successors, is_solved , f1, f2)

1. insert(s, OPEN); add_node(s,Ge); // Ge is the explored part of G.
2. LOOP
3. IF (OPEN = ∅) THEN RETURN(Fail);

4.a H = min_solution_base(s,Ge, f1); // Find most prom. sol. base in Ge.
4.b n = min(OPEN ∩H, f2); // Find most informative non-goal node in H.

remove(n, OPEN); push(n, CLOSED);
5. FOREACH n′ IN successors(n) DO

IF (n′ ∈ OPEN OR n′ ∈ CLOSED) // Instance of n′ seen before?
THEN // Use old instance of n′ instead.

n′ = retrieve(n′, OPEN ∪ CLOSED);
ELSE // n′ encodes an instance of a new state.

insert(n′, OPEN); add_node(n′, Ge);
ENDIF
add_backpointer(n′, n); add_edge((n, n′), Ge);

IF is_solved(n′) // Is n′ goal node or labeled solvable?
THEN

propagate_label(n′);
IF is_solved(s) THEN RETURN(compute_solution_graph(Ge));

ENDIF

ENDDO
6. ENDLOOP

S:III-172 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search3.pdf#algorithm-basic-and-or
https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf1.pdf#algorithm-bf
https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf1.pdf#algorithm-bf-star

Remarks:

❑ Finding dead ends can be handled in the same way as finding goal nodes.
IF (⊥ (n′) OR is_labeled(n′)) // Is n′ unsolvable?
THEN

propagate_label(n′); IF is_unsolvable(s) THEN RETURN(Fail);
ENDIF

❑ The expansion of nodes in G can be implemented with or without occurrence check:

(a) With occurrence check. If an already existing rest problem is encountered, only an
additional link is added to Ge. As a consequence, Ge is a subgraph of the underlying
search space graph G.

(b) Without occurrence check. Each successor becomes a new node, irrespective of
duplicate rest problems. As a consequence, Ge corresponds to an AND-OR tree that can
be considered as an unfolding of the underlying search space graph G.

Therefore, using an occurrence check or not can be seen as different ways of modeling a
problem.

❑ The construction of solution bases depends strongly on the structure of the evaluation
function f1. In the general case, an individual construction of all possible solution bases plus
an individual computation of the f1-values cannot be avoided. However, if f1 can be stated in
a recursive manner using specific functions, computation of the minimum f1 value and
computation of a most promising solution base can be done very efficiently.

❑ General Best-First Algorithms are informed versions of
:::::::::::::::::::::::::::::::::
Basic_AND-OR_Search.

S:III-173 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search3.pdf#algorithm-basic-and-or

Best-First Search for AND-OR Graphs
Illustration of GBF

Solved rest problem

Node on OPEN

Node on CLOSED

s

The underlying AND-OR graph of the following GBF illustration.

S:III-174 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Illustration of GBF

Solved rest problem

Node on OPEN

Node on CLOSED

s

f1(H) Evaluates solution bases H in regard to their edge count.
Answers the question: What does the solution associated with H cost?

f2(H) Returns the node with a most expensive rest problem in H.
Answers the question: What node to expand next?

h(n) Estimates the number of edges for the rest problem at node n.
S:III-175 Informed Search © STEIN/LETTMANN 1998-2020

Remarks:

❑ The evaluation function f1(H) estimates the total number of edges of a solution graph
extending solution base H. Obviously, f1(H) will be based on the heuristic h(n).

❑ Rationale for f1. Searching the smallest solution may quickly lead to a first solution graph.
Keyword: Small-is-Quick Principle

❑ Rationale for f2. A possible estimation error of h, which allegedly claims an unsolvable rest
problem as a solvable one, should be detected earliest. Since it is reasonable to assume that
the estimation error is proportional to the cost estimate, we pick a most expensive rest
problem first.

❑ Recall that the complete AND-OR graph is neither given nor manageable for real-world
problems.

S:III-176 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Illustration of GBF (continued)

1. s is expanded and
moved to CLOSED.

Solved rest problem

Node on OPEN

Node on CLOSED

s

h = 6 h = 3h = 4

S:III-177 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Illustration of GBF (continued)

1. s is expanded and
moved to CLOSED.

Solved rest problem

Node on OPEN

Node on CLOSED

s

h = 6 h = 3h = 4

Possible solution bases:

s

f1(H) = 6 + 1 = 7

6 34

s

f1(H) = 4 + 1 = 5

6 34

s

f1(H) = 3 + 1 = 4

6 34

Most promising solution base H

S:III-178 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Illustration of GBF (continued)

2. Expansion of the node
n ∈ (OPEN ∩H).

Solved rest problem

Node on OPEN

Node on CLOSED

h = 6

c = 0

h = 4

previous
 most promising
 solution base

s

S:III-179 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Illustration of GBF (continued)

2. Expansion of the node
n ∈ (OPEN ∩H).

Solved rest problem

Node on OPEN

Node on CLOSED

h = 6

c = 0

h = 4

previous
 most promising
 solution base

s

Possible solution bases:

Most promising solution base H

s

f1(H) = 7

6

0

4

s

f1(H) = 5

6

0

4

s

f1(H) = 7

6

0

4

f1 = 6

S:III-180 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Illustration of GBF (continued)

3. Expansion of the node
n ∈ (OPEN ∩H).

Solved rest problem

Node on OPEN

Node on CLOSED

h = 6

c = 0h = 1

s

h = 2

previous
most promising
solution base

S:III-181 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Illustration of GBF (continued)

3. Expansion of the node
n ∈ (OPEN ∩H).

Solved rest problem

Node on OPEN

Node on CLOSED

h = 6

c = 0h = 1

s

h = 2

previous
most promising
solution base

Possible solution bases:

6

02

s

1

6

02

s

f1 = 6

1

6

02

s

f1 = 6

1

Most promising solution base H

f1(H) = 7 f1(H) = 7 f1(H) = 9

S:III-182 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Illustration of GBF (continued)

4. Based on f2(n):
expansion of
some node
n ∈ (OPEN ∩H).

Solved rest problem

Node on OPEN

Node on CLOSED

Solved rest problem

Node on OPEN

Node on CLOSED

s

h = 6

c = 0h = 1

h = 2

previous
most promising
solution base

S:III-183 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Illustration of GBF (continued)

4. Based on f2(n):
expansion of
some node
n ∈ (OPEN ∩H).

Solved rest problem

Node on OPEN

Node on CLOSED

Solved rest problem

Node on OPEN

Node on CLOSED

s

h = 6

c = 0h = 1

h = 2

previous
most promising
solution base

Solution bases:

f1 = 8

f1 = 2 f1 = 2

s ss

0

2

1

2 2

6 6 6

0

f1 = 6

1f1 = 2 o.
f1 = 3

01

f1 = 7 o.
f1 = 7 o.
f1 = 9

f1 = 6

H

f1

S:III-184 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Illustration of GBF (continued) [next step]

5. Expansion of the node
n ∈ (OPEN ∩H).

Solved rest problem

Node on OPEN

Node on CLOSED

s

h = 6

c = 0h = 2 c = 0

c = 0

previous
most promising
solution base

S:III-185 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Illustration of GBF (continued) [next step]

5. Expansion of the node
n ∈ (OPEN ∩H).

Solved rest problem

Node on OPEN

Node on CLOSED

s

h = 6

c = 0h = 2 c = 0

c = 0

previous
most promising
solution base

A solution graph H: f1 = 9H s

0

2

6

0

f1 = 3

0

f1 = 8

f1 = 2

S:III-186 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Illustration of GBF (continued) [next step]

5. Expansion of the node
n ∈ (OPEN ∩H).

Solved rest problem

Node on OPEN

Node on CLOSED

s

h = 6

c = 0h = 2 c = 0

c = 0

previous
most promising
solution base

A solution graph H: f1 = 9H s

0

2

6

0

f1 = 3

0

f1 = 8

f1 = 2

S:III-187 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Multiple Accounting of a Node

Solved rest problem

Node on OPEN

Node on CLOSED

n2

n1

n3

n5

n4

c = 0h = 10

h = 5

s

S:III-188 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Multiple Accounting of a Node

Solved rest problem

Node on OPEN

Node on CLOSED

n2

n1

n3

n5

n4

c = 0h = 10

h = 5

s

n1 start node (a) (b)

n2

n1

n3

n5

n4

c = 0h = 10

h = 5

n2

n1

n3

n5

n4

c = 0h = 10

h = 5

CG(n1) (a) (b)

duplicate count 19 24

true count 19 14

S:III-189 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Multiple Accounting of a Node

Solved rest problem

Node on OPEN

Node on CLOSED

n2

n1

n3

n5

n4

c = 0h = 10

h = 5

s

n1 start node (a) (b)

n2

n1

n3

n5

n4

c = 0h = 10

h = 5

n2

n1

n3

n5

n4

c = 0h = 10

h = 5

CG(n1) (a) (b)

duplicate count 19 24

true count 19 14

S:III-190 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Multiple Accounting of a Node

Solved rest problem

Node on OPEN

Node on CLOSED

n2

n1

n3

n5

n4

c = 0h = 10

h = 5

s

n1 start node (a) (b)

n2

n1

n3

n5

n4

c = 0h = 10

h = 5

n2

n1

n3

n5

n4

c = 0h = 10

h = 5

CG(n1) (a) (b)

duplicate count 19 24

true count 19 14

S:III-191 Informed Search © STEIN/LETTMANN 1998-2020

Remarks:

❑ The minimum cost contribution of node n2 to a solution is not constant, depending on the
multiple accounting of node n3.

❑ Q. Which approach is to be preferred—simple computation of f1 (∼ multiple accounting) or
true accounting?

S:III-192 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Optimality of Algorithm GBF [

:::
BF

:::::::::::
optimality]

In general, the first solution found by Algorithm GBF may not be optimum with
respect to the evaluation function f1.

Important preconditions for (provably) finding optimum solution graphs in
AND-OR-graphs by general best-first algorithms:

1. The cost estimate underlying f1 must be optimistic, i.e., underestimating costs
or overestimating merits.

In particular, the true cost of a cheapest solution graph H extending a solution
base H exceeds its f1-value: CH(s) ≥ f1(H).

2. The termination in case of success (is_solved(s) = True) must be delayed.

In particular, there is no call to solved_labeling after node expansion, but
each time when determining a most promising solution base H.

Algorithm GBF with delayed termination is called Algorithm GBF*.

S:III-193 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf1.pdf#algorithm-bf-optimality

Best-First Search for AND-OR Graphs
Optimality of Algorithm GBF [

:::
BF

:::::::::::
optimality]

In general, the first solution found by Algorithm GBF may not be optimum with
respect to the evaluation function f1.

Important preconditions for (provably) finding optimum solution graphs in
AND-OR-graphs by general best-first algorithms:

1. The cost estimate underlying f1 must be optimistic, i.e., underestimating costs
or overestimating merits.

In particular, the true cost of a cheapest solution graph H extending a solution
base H exceeds its f1-value: CH(s) ≥ f1(H).

2. The termination in case of success (is_solved(s) = True) must be delayed.

In particular, there is no call to solved_labeling after node expansion, but
each time when determining a most promising solution base H.

Algorithm GBF with delayed termination is called Algorithm GBF*.

S:III-194 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf1.pdf#algorithm-bf-optimality

Best-First Search for AND-OR Graphs [
::::
BF,

:::::
BF*, GBF]

GBF∗(s, successors, is_solved , f1, f2)

1. insert(s, OPEN); add_node(s,Ge); // Ge is the explored part of G.
2. LOOP
3. IF (OPEN = ∅) THEN RETURN(Fail);

4.a H = min_solution_base(s,Ge, f1); // Find most prom. sol. base in Ge.
➜ solved_labeling(H); // Is H a solution graph?
➜ IF is_solved(s) THEN RETURN(H); // Delayed termination.

4.b n = min(OPEN ∩H, f2); // Find most informative non-goal node in H.
remove(n, OPEN); push(n, CLOSED);

5. FOREACH n′ IN successors(n) DO
IF (n′ ∈ OPEN OR n′ ∈ CLOSED) // Instance of n′ seen before?
THEN // Use old instance of n′ instead.

n′ = retrieve(n′, OPEN ∪ CLOSED);
ELSE // n′ encodes an instance of a new state.

insert(n′, OPEN); add_node(n′, Ge);
ENDIF
add_backpointer(n′, n); add_edge((n, n′), Ge);

➜ ///IF///////////////////is_solved(n′)
➜ ///////THEN
➜ //propagate_label(n′);IF is_solved(s)THENRETURN(compute_solution_graph(Ge));
➜ ////////ENDIF

ENDDO
6. ENDLOOP

S:III-195 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf1.pdf#algorithm-bf
https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf1.pdf#algorithm-bf-star

Best-First Search for AND-OR Graphs
Illustration of GBF* (continued) [previous step]

5. Expansion of the node
n ∈ (OPEN ∩H).

Solved rest problem

Node on OPEN

Node on CLOSED

s

h = 6

c = 0h = 2 c = 0

c = 0

previous
most promising
solution base

S:III-196 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Illustration of GBF* (continued) [previous step]

5. Expansion of the node
n ∈ (OPEN ∩H).

Solved rest problem

Node on OPEN

Node on CLOSED

s

h = 6

c = 0h = 2 c = 0

c = 0

previous
most promising
solution base

Solution base / graph:

ss

0

2

6

0

f1 = 7

0

0

2

6

0

f1 = 3

f1 = 9

0

f1 = 8

f1 = 2

H
most promising
solution base

S:III-197 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Illustration of GBF* (continued)

6. Expansion of the node
n ∈ (OPEN ∩H).

Solved rest problem

Node on OPEN

Node on CLOSED

s

c = 0

c = 0h = 2 c = 0

c = 0c = 0

previous
most promising
solution base

S:III-198 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Illustration of GBF* (continued)

6. Expansion of the node
n ∈ (OPEN ∩H).

Solved rest problem

Node on OPEN

Node on CLOSED

s

c = 0

c = 0h = 2 c = 0

c = 0c = 0

previous
most promising
solution base

Returned solution graph H: s

f1 = 3

f1 = 7H

0

2 0 0

f1 = 2

00

f1 = 6

S:III-199 Informed Search © STEIN/LETTMANN 1998-2020

Best-First Search for AND-OR Graphs
Illustration of GBF* (continued)

6. Expansion of the node
n ∈ (OPEN ∩H).

Solved rest problem

Node on OPEN

Node on CLOSED

s

c = 0

c = 0h = 2 c = 0

c = 0c = 0

previous
most promising
solution base

Returned solution graph H: s

f1 = 3

f1 = 7H

0

2 0 0

f1 = 2

00

f1 = 6

S:III-200 Informed Search © STEIN/LETTMANN 1998-2020

Relation between GBF and BF

Algorithm GBF applied to a state-space graph will simulate Algorithm BF.
(if the evaluation function f in BF is order preserving) [

:::::
S:III

:::::::::::
Evaluation

:::
of

::::::::::::::
State-Space

::::::::
Graphs]

S:III-201 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf2.pdf#order-preservation-bf2

Relation between GBF and BF

Algorithm GBF applied to a state-space graph will simulate Algorithm BF.
(if the evaluation function f in BF is order preserving) [

:::::
S:III

:::::::::::
Evaluation

:::
of

::::::::::::::
State-Space

::::::::
Graphs]

The key difference between GBF and BF:

GBF Solution bases are graphs. (clear due to nature of the problem)

GBF The most promising solution base is searched among all possible solution
bases in Ge, the explored part of the search space graph.

BF Solution bases are paths. (clear due to nature of the problem)

BF At each point in time the union of the considered solution bases forms a tree
with root s. The tree structure is maintained by always discarding the inferior
path of two paths leading to the same node. The most promising solution
base is searched among all paths in this tree.

BF The discarding of a path (solution base) is irrevocable.

S:III-202 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf2.pdf#order-preservation-bf2

Relation between GBF and BF

Algorithm GBF applied to a state-space graph will simulate Algorithm BF.
(if the evaluation function f in BF is order preserving) [

:::::
S:III

:::::::::::
Evaluation

:::
of

::::::::::::::
State-Space

::::::::
Graphs]

The key difference between GBF and BF:

GBF Solution bases are graphs. (clear due to nature of the problem)

GBF The most promising solution base is searched among all possible solution
bases in Ge, the explored part of the search space graph.

BF Solution bases are paths. (clear due to nature of the problem)

BF At each point in time the union of the considered solution bases forms a tree
with root s. The tree structure is maintained by always discarding the inferior
path of two paths leading to the same node. The most promising solution
base is searched among all paths in this tree.

BF The discarding of a path (solution base) is irrevocable.

S:III-203 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf2.pdf#order-preservation-bf2

Relation between GBF and BF

Algorithm GBF applied to a state-space graph will simulate Algorithm BF.
(if the evaluation function f in BF is order preserving) [

:::::
S:III

:::::::::::
Evaluation

:::
of

::::::::::::::
State-Space

::::::::
Graphs]

The key difference between GBF and BF:

GBF Solution bases are graphs. (clear due to nature of the problem)

GBF The most promising solution base is searched among all possible solution
bases in Ge, the explored part of the search space graph.

BF Solution bases are paths. (clear due to nature of the problem)

BF At each point in time the union of the considered solution bases forms a tree
with root s. The tree structure is maintained by always discarding the inferior
path of two paths leading to the same node. The most promising solution
base is searched among all paths in this tree.

BF The discarding of a path (solution base) is irrevocable.

S:III-204 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf2.pdf#order-preservation-bf2

Relation between GBF and BF

Algorithm GBF applied to a state-space graph will simulate Algorithm BF.
(if the evaluation function f in BF is order preserving) [

:::::
S:III

:::::::::::
Evaluation

:::
of

::::::::::::::
State-Space

::::::::
Graphs]

The key difference between GBF and BF:

GBF Solution bases are graphs. (clear due to nature of the problem)

GBF The most promising solution base is searched among all possible solution
bases in Ge, the explored part of the search space graph.

BF Solution bases are paths. (clear due to nature of the problem)

BF At each point in time the union of the considered solution bases forms a tree
with root s. The tree structure is maintained by always discarding the inferior
path of two paths leading to the same node. The most promising solution
base is searched among all paths in this tree.

BF The discarding of a path (solution base) is irrevocable.

S:III-205 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf2.pdf#order-preservation-bf2

Remarks:

❑ (Under BF) the tree formed by the union of all solution bases is also called traversal tree. It is
defined by the back-pointers that are set by the

::::::::::::
Algorithm

::::
BF.

❑ (Under BF) the decision to discard an inferior path (solution base) is based on a single
parameter, usually a cost value, which is maintained at the respective OPEN node.

❑ Under BF the cost value assigned to a node is unique. Under GBF, however, a node can be
used in different solution bases and may get assigned different cost values for different
solution bases at the same time.

❑ Under BF there is a 1:1 relationship between expansion candidates (the nodes on OPEN)
and solution bases (the paths that start at s and end at some node on OPEN). Put another
way, each node on OPEN represents a solution base, and there is no solution base without a
corresponding OPEN node.

❑ (Under BF) the term “irrevocable” means that an inferior path from s so some n will never
become part of solution that also contains the node n. Irrevocability has wide-ranging
consequences, which may be both crucial and reasonable, depending on the search problem
at hand.

S:III-206 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf1.pdf#algorithm-bf

Relation between GBF and BF
Irrevocability is not Amenable to Problem Reduction Graphs
[
::::::::::::::
Irrevocability

::
in

::::::::::::::
State-Space

:::::::::
Graphs]

n3

n1 n2

n4

s

⊥

n3

n1 n2

n4

s

⊥

H1 H2

The following equivalence does not generally hold for problem reduction graphs:

“Solution base H1 can be completed to a solution”
⇔

“Solution base H2 can be completed to a solution.”

S:III-207 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf1.pdf#bf-path-discarding

Remarks:

❑ The illustrated solution bases H1, H2, do not fulfill the equivalence. They share the
continuation at node n4, and let us assume that H2 is inferior to H1: f1(H1) < f1(H2).
However, H2 cannot be discarded since at a later point in time the problem associated with
node n3 may turn out to be unsolvable. If we discarded H2, GBF would miss the only possible
solution.

S:III-208 Informed Search © STEIN/LETTMANN 1998-2020

	TOC Informed Search Pt. 4
	Algorithm GBF
	Algorithm GBF*

