
Chapter S:III

III. Informed Search
❑ Best-First Search Basics
❑ Best-First Search Algorithms
❑ Cost Functions for State-Space Graphs
❑ Evaluation of State-Space Graphs
❑ Algorithm A*

❑ BF* Variants
❑ Hybrid Strategies

❑ Best-First Search for AND-OR Graphs
❑ Relation between GBF and BF
❑ Cost Functions for AND-OR Graphs
❑ Evaluation of AND-OR Graphs

S:III-209 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs
Overview

Similar to BF, also GBF defines a schema for the design of search strategies. Up to
this point, the evaluation functions f1 remained unspecified.

Questions:

❑ How to compute f1?

❑ How to evaluate a solution graph?

❑ How to evaluate a search space graph?

❑ How to identify a most promising solution base?

These question are answered analogously to the BF case.

Notice the differences: solution graphs are considered instead of solution paths.

S:III-210 Informed Search © STEIN/LETTMANN 1998-2020

Remarks:

❑ In fact, implicitly, we have already given answers during the
:::::::::::::
Illustration

:::
of

:::::::
GBF before. What

will be added in the following are the foundations for these answers, along with a definite
semantics.

S:III-211 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf4.pdf#illustration-gbf

Cost Functions for AND-OR Graphs
Overview [

::::::::::
Overview

::::
for

:::
BF] (continued)

The answers are developed in several steps by the following concepts:

1. Recursive cost functions (for graphs)

2. Solution cost (for a given solution graph)
3. Optimum solution cost (for a complete search space graph)

4. Estimated solution cost (for a given solution base)
5. Estimated optimum solution cost (for a partial search space graph)

Names of the respective cost functions:

Solution

given optimum searched

Exploration
complete CH C∗

partial ĈH Ĉ ; H

S:III-212 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf2.pdf#cost-function-overview-or

Cost Functions for AND-OR Graphs
Overview [

::::::::::
Overview

::::
for

:::
BF] (continued)

The answers are developed in several steps by the following concepts:

1. Recursive cost functions (for graphs)

2. Solution cost (for a given solution graph)
3. Optimum solution cost (for a complete search space graph)

4. Estimated solution cost (for a given solution base)
5. Estimated optimum solution cost (for a partial search space graph)

Names of the respective cost functions:

Solution

given optimum searched

Exploration
complete CH(s) C∗(s)

partial ĈH(s) Ĉ(s) ; H

H = most promising solution base.
S:III-213 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf2.pdf#cost-function-overview-or

Cost Functions for AND-OR Graphs

If solution graphs are known, the solution cost for a solution graph can be
determined.

Definition 43 (Cost Function CH)

Let G be an acyclic AND-OR graph and let M be an ordered set. A function CH,
which assigns to each

::::::::::::
solution

:::::::::
graph H and each node n in G a cost value CH(n) in

M , is called a cost function (for G).

Usage and notation of CH :

❑ No provisions are made how to compute CH(n) for a solution graph H.
CH(s) specifies the cost of a solution graph H for s :

f1(H) = CH(s).

S:III-214 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search3.pdf#solution-graph-and-or-graph

Remarks:

❑ Again, as ordered set M usually R ∪ {∞} is chosen.

❑ CH(n) should be seen as binary function with arguments H and n.

❑ The cost value CH(n) is meaningful only if n is a node in H.

❑ Solution cost does not measure efforts for finding a solution. Solution cost aggregate
properties of operations and decompositions in a solution graph to form a cost value.

❑ Instead of cost functions we may employ merit functions or, even more general, weight
functions. The respective notations are QH for merits, and WH for weights.

S:III-215 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs

If the entire search space graph rooted at a node s is known, the optimum solution
cost for the root node s can be determined.

Definition 44 (Optimum Solution Cost C∗, Optimum Solution)

Let G be an acyclic AND-OR graph with root node s and let CH(n) denote a cost
function for G.

The optimum solution cost for a node n in G, C∗(n), is defined as

C∗(n) = inf{CH(n) | H is solution graph for n in G}

A solution graph with solution cost C∗(n) is called optimum solution graph for n. The
optimum solution cost for s, C∗(s), is abbreviated as C∗.

S:III-216 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs

If the entire search space graph rooted at a node s is known, the optimum solution
cost for the root node s can be determined.

Definition 44 (Optimum Solution Cost C∗, Optimum Solution)

Let G be an acyclic AND-OR graph with root node s and let CH(n) denote a cost
function for G.

The optimum solution cost for a node n in G, C∗(n), is defined as

C∗(n) = inf{CH(n) | H is solution graph for n in G}

A solution graph with solution cost C∗(n) is called optimum solution graph for n. The
optimum solution cost for s, C∗(s), is abbreviated as C∗.

S:III-217 Informed Search © STEIN/LETTMANN 1998-2020

Remarks:

❑ If G contains no solution graph for n, let C∗(n) = ∞.

S:III-218 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs

If the entire search space graph rooted at a node s is known, the optimum solution
cost extending a solution base for s can be determined.

Definition 45 (Optimum Solution Cost C∗
H for a Solution Base)

Let G be an acyclic AND-OR graph with root node s and let CH(n) denote a cost
function for G.

The optimum solution cost, C∗
H(n), for a node n in a

::::::::::::
solution

:::::::::
base H in G is defined

as
C∗

H(n) = inf{CH ′(n) | H ′ is solution graph in G extending H}

S:III-219 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search3.pdf#solution-base-and-or-graph

Remarks:

❑ In the setting of Definition 45 we assume:

C∗(s) = min{C∗
H(s) | H is solution base maintasined by an algorithm}

The solution bases maintained by algorithm GBF are the maximal solution bases for s in the
explored part Ge of the search space graph G.

Therefore, it is essential for search algorithms to keep available solution bases that are
important for this result. Optimistically estimating C∗

H(n) in GBF will direct the search into
promising directions.

S:III-220 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs

If the search space graph rooted at a node s is known partially, the optimum
solution cost extending a solution base for s can be estimated.

Definition 46 (Estimated Solution Cost ĈH for a Solution Base)

Let G be an acyclic AND-OR graph with root node s and let CH(n) denote a cost
function for G.

The estimated solution cost, ĈH(n), for a node n in a solution base H in G returns
an estimate of C∗

H(n).

ĈH(n) is optimistic, if and only if ĈH(n) ≤ C∗
H(n).

Usage of ĈH:

❑ In GBF we use f1(H) = ĈH(s) with solution bases H for s in the explored part
of the search space graph G.

❑ f1(H) is optimistic, if f1(H) ≤ C∗
H(s).

S:III-221 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs

If the search space graph rooted at a node s is known partially, the optimum
solution cost extending a solution base for s can be estimated.

Definition 46 (Estimated Solution Cost ĈH for a Solution Base)

Let G be an acyclic AND-OR graph with root node s and let CH(n) denote a cost
function for G.

The estimated solution cost, ĈH(n), for a node n in a solution base H in G returns
an estimate of C∗

H(n).

ĈH(n) is optimistic, if and only if ĈH(n) ≤ C∗
H(n).

Usage of ĈH:

❑ In GBF we use f1(H) = ĈH(s) with solution bases H for s in the explored part
of the search space graph G.

❑ f1(H) is optimistic, if f1(H) ≤ C∗
H(s).

S:III-222 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs

If the search space graph rooted at a node s is known partially, the optimum
solution cost for s can be estimated.

Definition 47 (Estimated Optimum Solution Cost Ĉ [Overview])

Let G be an acyclic AND-OR graph with root node s and let CH(n) denote a cost
function for G. Further, let Ge be a finite (explored) subgraph of G with root node s.

The estimated optimum solution cost for a node n in G, Ĉ(n), is defined as follows:

Ĉ(n) = min{ĈH(n) | H is maximal solution base in Ge}

A solution base H for s with ĈH(s) = Ĉ(s) is called most promising solution base
(for s).

For an algorithm searching an acyclic AND-OR-graph G, the finite explored part Ge

of G defines the solution bases considered: the tip nodes of a solution base have to
be tip nodes in Ge.

S:III-223 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs

If the search space graph rooted at a node s is known partially, the optimum
solution cost for s can be estimated.

Definition 47 (Estimated Optimum Solution Cost Ĉ [Overview])

Let G be an acyclic AND-OR graph with root node s and let CH(n) denote a cost
function for G. Further, let Ge be a finite (explored) subgraph of G with root node s.

The estimated optimum solution cost for a node n in G, Ĉ(n), is defined as follows:

Ĉ(n) = min{ĈH(n) | H is maximal solution base in Ge}

A solution base H for s with ĈH(s) = Ĉ(s) is called most promising solution base
(for s).

For an algorithm searching an acyclic AND-OR-graph G, the finite explored part Ge

of G defines the solution bases considered: the tip nodes of a solution base have to
be tip nodes in Ge.

S:III-224 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs
Recursive Cost Functions

The computation of the evaluation functionsr f1 would be infeasible

1. if each possible solution base had to be analyzed in isolation, or

2. if the cost of a solution base had to be computed from scratch for each
additionally explored node.

➜ Utilization of recursive cost functions to implement the evaluation function f1.

Efficiency benefits of recursive functions:

1. Shared computation.
Already computed evaluation results for solution bases H are exploited for
other solution bases that contain H.

2. Selective updating.
Only the predecessors of a newly explored node need to be updated.

S:III-225 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs
Recursive Cost Functions (continued)

Definition 48 (Recursive Cost Function, Cost Measure)

A cost function CH for a solution graph H is called recursive, if for each node n in H

it holds:

CH(n) =



F [E(n)] n is goal node and leaf in H

F [E(n), CH(n
′)] n is inner OR node in H,

n′ direct successor of n in H

F [E(n), CH(n1), . . . , CH(nk)] n is inner AND node in H,

n1, . . . , nk direct successors of n in H

❑ n1, n2, . . . , nk denote the direct successors of n in H,

❑ E(n) ∈ E denotes a set of local properties of n with respect to H,

❑ F is a function that prescribes how local properties of n are accounted
(better: combined) with properties of the direct successors of n:

F : E×Mk → M, where M is an ordered set.

F is called cost measure.

S:III-226 Informed Search © STEIN/LETTMANN 1998-2020

Remarks:

❑ Observe that for each node n in a solution graph H the complete subgraph of H that is rooted
at n forms a solution graph for n (neglecting additional solution constraints).

❑ As a shorthand we use c(n) := F [E(n)] for the remaining cost of a nontrivial goal node. Often
we have (c(n) = 0.

❑ The computation of CH(n) is called cost propagation. If CH(n) fulfills the conditions of a
recursive cost function, it can be computed bottom-up, similar to the solved-labeling
procedure.

❑ The function CH(n) employs the the same E(n) and the same cost measure F for all possible
solution graphs of a search space graph.
As a consequence, cost value computation is context insensitive: If a solution graph for node
n is contained in two solution graphs H and H ′, then CH(n) = CH ′(n) holds.

S:III-227 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs
Illustration of CH [Overview, Illustration of C∗]

n1

n2

s

n3

1 2
4

1
2

3
3

1

2

5

3

2
5

3

1

c = 4 c = 1 c = 2

c = 3c = 2

c = 1

1

1

Underlying problem-reduction graph:

E(n) = c(n, n′) = cost for edge (n, n′)

CH(n) =



c(n) n is goal node and leaf in H

c(n, n′) + CH(n
′) n is inner OR node in H,

n′ direct successor of n in H

maxi{c(n, ni) + CH(ni)} n is inner AND node in H,

ni direct successors of n in H
S:III-228 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs
Illustration of CH [Overview, Illustration of C∗]

n1

n2

s

n3

1 2
4

1
2

3
3

1

2

5

3

2
5

3

1

c = 4 c = 1 c = 2

c = 3c = 2

c = 1

1

1

H ≡ solution graph for s :

CH(s) = 12

E(n) = c(n, n′) = cost for edge (n, n′)

CH(n) =



c(n) n is goal node and leaf in H

c(n, n′) + CH(n
′) n is inner OR node in H,

n′ direct successor of n in H

maxi{c(n, ni) + CH(ni)} n is inner AND node in H,

ni direct successors of n in H
S:III-229 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs
Illustration of CH [Overview, Illustration of C∗]

n1

n2

s

n3

1 2
4

1
2

3
3

1

2

5

3

2
5

3

1

c = 4 c = 1 c = 2

c = 3c = 2

c = 1

1

1

Solution graph for n2 :

CH(n2) = 7

E(n) = c(n, n′) = cost for edge (n, n′)

CH(n) =



c(n) n is goal node and leaf in H

c(n, n′) + CH(n
′) n is inner OR node in H,

n′ direct successor of n in H

maxi{c(n, ni) + CH(ni)} n is inner AND node in H,

ni direct successors of n in H
S:III-230 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs
Illustration of CH [Overview, Illustration of C∗]

n1

n2

s

n3

1 2
4

1
2

3
3

1

2

5

3

2
5

3

1

c = 4 c = 1 c = 2

c = 3c = 2

c = 1

1

1

Solution graph for n1 :

CH(n1) = 11

E(n) = c(n, n′) = cost for edge (n, n′)

CH(n) =



c(n) n is goal node and leaf in H

c(n, n′) + CH(n
′) n is inner OR node in H,

n′ direct successor of n in H

maxi{c(n, ni) + CH(ni)} n is inner AND node in H,

ni direct successors of n in H
S:III-231 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs
Illustration of CH [Overview, Illustration of C∗, Ĉ]

 identified
heavy

counterfeit
P3 P4 P5

R1

R2

R3 R1 R2 R3

identified
light

counterfeit

identified
light

counterfeit

T6: Test with
 2 coins

T1: Test with
 12 coins

Test TjTest Ti

Test T1 Test T1

R1: Balance tips
 right

R2: Balance
 tips left

R2: Balance
 neutral

...

...

P0+T6: All problems that

P1+Ti: All problems that

P2: 10-suspect problemP1: 2-suspect problem

P2+Tj: All problems that

P0: 12-suspect problem

Solution graph for the counterfeit problem:

❑ Leaf nodes correspond to identified coin.

❑ OR nodes (action, strategy) specify the
chosen test.

❑ AND nodes (reaction) model the weighing
outcomes.

CH(n) =



0 n is goal node and leaf in H

1 + CH(n
′) n is inner OR node in H,

n′ direct successor of n in H

max{CH(ni) | i = 1, 2, 3} n is inner AND node in H,

ni direct successors of n in H
S:III-232 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs
Illustration of CH [Overview, Illustration of C∗, Ĉ]

 identified
heavy

counterfeit
P3 P4 P5

R1

R2

R3 R1 R2 R3

identified
light

counterfeit

identified
light

counterfeit

T6: Test with
 2 coins

T1: Test with
 12 coins

Test TjTest Ti

Test T1 Test T1

R1: Balance tips
 right

R2: Balance
 tips left

R2: Balance
 neutral

...

...

P0+T6: All problems that

P1+Ti: All problems that

P2: 10-suspect problemP1: 2-suspect problem

P2+Tj: All problems that

P0: 12-suspect problem

Solution graph for the counterfeit problem:

❑ Leaf nodes correspond to identified coin.

❑ OR nodes (action, strategy) specify the
chosen test.

❑ AND nodes (reaction) model the weighing
outcomes.

CH(n) =



0 n is goal node and leaf in H

1 + CH(n
′) n is inner OR node in H,

n′ direct successor of n in H∑
i=1,2,3

pi(n) · CH(ni) n is inner AND node in H,

ni direct successors of n in H
S:III-233 Informed Search © STEIN/LETTMANN 1998-2020

Remarks:

❑ The recursive cost function CH(n) with max{CH(ni) | i = 1, 2, 3} in the AND-node branch
models the maximum required number of tests (worst case costs) using the weighing
operations in the solution graph H.

❑ The recursive cost function CH(n) with
∑

i=1,2,3 pi(n) · CH(ni) in the AND-node branch models
the expected test effort. The pi, i = 1, 2, 3 are the probabilities for the test outcomes and could
be quantified as follows:

pi(n) =


1
2 ·

k(n)
12−u(n) i ∈ {1, 3}

1− k(n)
12−u(n) i = 2

where k(n), k(n) ≤ 12, is number of suspicious coins that are weighed in subproblem n, and
u(n), u(n) < 12, is the number of coins classified as “not-suspect” in subproblem n.

S:III-234 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs
Recursive Cost Functions (continued)

If the search space graph rooted at a node s is known partially and a recursive cost
function is used, cost estimates for a solution base

1. can be built upon estimates for optimum solution cost of non-goal leaf nodes
in this solution base and,

2. can be computed by taking the estimations of h for granted and propagating
the cost values bottom-up. Keyword: Face-Value Principle

Definition 49 (Heuristic Function h)

Let G be an acyclic AND-OR graph. A function h, which assigns each node n in G

an estimate h(n) of the optimum solution cost value C∗(n), the optimum cost of a
solution graph for n, is called heuristic function (for G).

S:III-235 Informed Search © STEIN/LETTMANN 1998-2020

Cost Functions for AND-OR Graphs
Recursive Cost Functions (continued)

Corollary 50 (Estimated Solution Cost ĈH for a Solution Base)

Let G be an acyclic AND-OR graph with root node s and let CH(n) denote a cost
function for G.

Further, let the cost function be recursive based on F and E, and let h be a
heuristic function.

Using the face-value principle, the estimated solution cost for solution base H in G

is computed as follows:

ĈH(n) =



c(n) n is goal node and leaf in H

h(n) n is leaf in H but no goal node

F [E(n), ĈH(n
′)] n is inner OR node in H,

n′ direct successor of n in H

F [E(n), ĈH(n1), . . . , ĈH(nk)] n is inner AND node in H,

ni direct successors of n in H

S:III-236 Informed Search © STEIN/LETTMANN 1998-2020

Evaluation of AND-OR Graphs
Recursive Cost Functions and Efficiency

If the search space graph is an acyclic AND-OR graph rooted at a node s and is
known partially and a recursive cost function is used that is defined via a

1. monotone cost measure F , i.e., for e, c, c′ with c1 ≤ c′1, . . . , ck ≤ c′k we have

F [e, c1, . . . , ck] ≤ F [e, c′1, . . . , c
′
k]

the (estimated) optimum solution cost can be computed bottom-up.

A solution base can be determined which has the estimated optimum solution cost
as its estimated solution cost.

If additionally the recursive cost function is based on an

2. underestimating heuristic function h, i.e., h(n) ≤ C∗(n)

then the estimated solution cost ĈH(s) is underestimating optimum solution cost
C∗

H(s) for a solution base H.

S:III-237 Informed Search © STEIN/LETTMANN 1998-2020

Evaluation of AND-OR Graphs
Recursive Cost Functions and Efficiency (continued)

Corollary 51 (Optimum Solution Cost C∗ [
:::
BF, Overview])

Let G be an acyclic AND-OR graph rooted at s. Let CH(n) be a recursive cost
function for G based on E and a monotone cost measure F .

The optimum solution cost C∗(n) for a node n in G can be computed as follows:

C∗(n) =



c(n) n is goal node and leaf in G

∞ n is unsolvable leaf node in G

mini{F [E(n), C∗(ni)]} n is inner OR node in G,

ni direct successors of n in G

F [E(n), C∗(n1), . . . , C
∗(nk)] n is inner AND node in G,

ni direct successors of n in G

Compare to
:::::::::::::::
Bellman’s

::::::::::::::::
equations.

S:III-238 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf2.pdf#corollary-optimum-cost-or
https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-representation2.pdf#definition-bellman-equations-state-space

Evaluation of AND-OR Graphs
Illustration of C∗ [Overview, Illustration of CH]

n1

n2

s

n3

1 2
4

1
2

3
3

1

2

5

3

2
5

3

1

c = 4 c = 1 c = 2

c = 3c = 2

c = 1

1

1

Optimum solution graph for s:

C∗(s) ≡ C∗ = 8

E(n) = c(n, n′) = cost for edge (n, n′)

C∗(n) =



c(n) n is goal node and leaf in G

mini{c(n, ni) + C∗(ni)} n is inner OR node in G

ni direct successors of n in G

maxi{c(n, ni) + C∗(ni)} n is inner AND node in G,

ni direct successors of n in G
S:III-239 Informed Search © STEIN/LETTMANN 1998-2020

Evaluation of AND-OR Graphs
Illustration of C∗ [Overview, Illustration of CH]

n1

n2

s

n3

1 2
4

1
2

3
3

1

2

5

3

2
5

3

1

c = 4 c = 1 c = 2

c = 3c = 2

c = 1

1

1

Optimum solution graph for n3:

C∗(n3) = 2

E(n) = c(n, n′) = cost for edge (n, n′)

C∗(n) =



c(n) n is goal node and leaf in G

mini{c(n, ni) + C∗(ni)} n is inner OR node in G

ni direct successors of n in G

maxi{c(n, ni) + C∗(ni)} n is inner AND node in G,

ni direct successors of n in G
S:III-240 Informed Search © STEIN/LETTMANN 1998-2020

Evaluation of AND-OR Graphs
Illustration of C∗ [Overview, Illustration of CH]

n1

n2

s

n3

1 2
4

1
2

3
3

1

2

5

3

2
5

3

1

c = 4 c = 1 c = 2

c = 3c = 2

c = 1

1

1

Optimum solution graph for n2:

C∗(n2) = 7

E(n) = c(n, n′) = cost for edge (n, n′)

C∗(n) =



c(n) n is goal node and leaf in G

mini{c(n, ni) + C∗(ni)} n is inner OR node in G

ni direct successors of n in G

maxi{c(n, ni) + C∗(ni)} n is inner AND node in G,

ni direct successors of n in G
S:III-241 Informed Search © STEIN/LETTMANN 1998-2020

Evaluation of AND-OR Graphs
Illustration of C∗ [Overview, Illustration of CH Ĉ]

 identified
heavy

counterfeit
P3 P4 P5

R1

R2

R3 R1 R2 R3

identified
light

counterfeit

identified
light

counterfeit

T6: Test with
 2 coins

T1: Test with
 12 coins

Test TjTest Ti

Test T1 Test T1

R1: Balance tips
 right

R2: Balance
 tips left

R2: Balance
 neutral

...

...

P0+T6: All problems that

P1+Ti: All problems that

P2: 10-suspect problemP1: 2-suspect problem

P2+Tj: All problems that

P0: 12-suspect problem

Search space graph for the counterfeit problem:

❑ Leaf nodes correspond to identified coin.

❑ OR nodes (action, strategy) specify the
possible tests.

❑ AND nodes (reaction) model the weighing
outcomes.

C∗(n) =



0 n is goal node and leaf in G

mini{1 + C∗(ni)} n is inner OR node in G

ni direct successors of n in G∑
i=1,2,3

pi · C∗(ni) n is inner AND node in G,

ni direct successors of n in G
S:III-242 Informed Search © STEIN/LETTMANN 1998-2020

Remarks:

❑ If the underlying search space graph is infinite, it may be impossible to compute C∗(n).
Exploiting properties of E and F for a search space graph can make the computation feasible.

S:III-243 Informed Search © STEIN/LETTMANN 1998-2020

Evaluation of AND-OR Graphs
Recursive Cost Functions and Efficiency (continued)

Corollary 52 (Estimated Optimum Solution Cost Ĉ [
:::
BF, Overview])

Let G be an acyclic AND-OR graph with root node s. Let h be a heuristic function
and let CH(n) be a recursive cost function for G based on E and a monotone cost
measure F . Further, let Ge be a finite (explored) subgraph of G with root node s.

Using the face-value principle, the estimated optimum solution cost Ĉ(n) for a node
n in G can be computed as follows:

Ĉ(n) =



c(n) n is goal node and leaf in Ge

h(n) n is leaf in Ge but no goal node
mini{F [E(n), Ĉ(ni)]} n is inner OR node in Ge,

ni direct successors of n in G

F [E(n), Ĉ(n1), . . . , Ĉ(nk)] n is inner AND node in Ge,

ni direct successors of n in G

S:III-244 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf2.pdf#corollary-estimated-optimum-cost-or

Remarks:

❑ The above calculation rules for Ĉ requires a useful handling regarding the value ∞ (assuming
h(n) = ∞ for unsolvable nodes n). In particular, the cost measure F should return ∞ if one of
its arguments is ∞.

❑ The above calculation rules for Ĉ presume the—already computed—estimated optimum
solution cost values for the direct successors of n. Their existence is guaranteed here (also
for infinitely large search space graphs) since the search (= the computation of Ĉ) uses a
finite portions of the search space graph, the explored subgraphs of the search space graph.

❑ Ĉ(n) computes for a node n the minimum of the estimated costs among all maximal solution
bases rooted at n in Ge. In particular, Ĉ(s) computes the estimated optimum solution cost for
the entire problem, and it hence defines a most promising solution base H for s in Ge.

❑ Finally, cost propagation is reasonable (also in the sense of “is efficient”) only for problems
whose solution obey

::::::::::::
Bellman’s

::::::::::::
principle

:::
of

:::::::::::::
optimality.

S:III-245 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-representation2.pdf#optimum-solution-bellman-problem-reduction

Evaluation of AND-OR Graphs
Illustration of Ĉ(n) [Overview, Illustration of CH , C∗]

 identified
heavy

counterfeit
P3 P4 P5

R1

R2

R3 R1 R2 R3

identified
light

counterfeit

identified
light

counterfeit

T6: Test with
 2 coins

T1: Test with
 12 coins

Test TjTest Ti

Test T1 Test T1

R1: Balance tips
 right

R2: Balance
 tips left

R2: Balance
 neutral

...

...

P0+T6: All problems that

P1+Ti: All problems that

P2: 10-suspect problemP1: 2-suspect problem

P2+Tj: All problems that

P0: 12-suspect problem

Search space graph G for the counterfeit problem:

❑ Leaf nodes correspond to identified coin.

❑ OR nodes (action, strategy) specify the
possible tests.

❑ AND nodes (reaction) model the weighing
outcomes.

Ge is explored subgraph of G generated so far.

Ĉ(n) =



0 n is goal node and leaf in Ge

h(n) n is leaf in Ge but no goal node

mini{1 + Ĉ(ni)} n is inner OR node in Ge,

ni direct successors of n in G

max{Ĉ(ni) | i = 1, 2, 3} n is inner AND node in Ge,

ni direct successors of n in G
S:III-246 Informed Search © STEIN/LETTMANN 1998-2020

Evaluation of AND-OR Graphs
Relation to the Algorithm GBF

GBF∗(s, successors,⊥, ⋆, f1, f2)

...

2. LOOP
3. IF (OPEN = ∅) THEN RETURN(Fail);

4.a H = min_solution_base(s,Ge, f1); // Find most prom. sol. base in Ge.
...

S:III-247 Informed Search © STEIN/LETTMANN 1998-2020

Evaluation of AND-OR Graphs
Relation to the Algorithm GBF

GBF∗(s, successors,⊥, ⋆, f1, f2)

...

2. LOOP
3. IF (OPEN = ∅) THEN RETURN(Fail);

4.a H = min_solution_base(s,Ge, f1); // Find most prom. sol. base in Ge.
...

Corollary 53 (Most Promising Solution Base H [Overview])

Let G be an acyclic AND-OR graph with root node s. Let h be a heuristic function
and let CH(n) be a recursive cost function for G based on E and a monotone cost
measure F . Further, let Ge be a finite (explored) subgraph of G with root node s.

Using the face-value principle, a most promising solution base H for s can be
characterized by the following conditions:

1. If H contains an inner OR node n, then H contains exactly one link to a direct
successor n′ in H, where

F [E(n), Ĉ(n′)] = mini{F [E(n), Ĉ(ni)]} ni direct successor of n

2. If H contains an inner AND node, then H contains all links to its direct
successors in H.

S:III-248 Informed Search © STEIN/LETTMANN 1998-2020

Evaluation of AND-OR Graphs
Relation to the Algorithm GBF [

:::
BF]

GBF∗(s, successors,⊥, ⋆, f1, f2)

...

2. LOOP
3. IF (OPEN = ∅) THEN RETURN(Fail);

4.a H = min_solution_base(s, f1);
solved_labeling(H); // Check if H is a solution graph.
IF ⋆(s) THEN RETURN(H); // Delayed termination.
...

Delayed termination:

➜ Algorithm GBF becomes Algorithm GBF*.

Define f1(H) as ĈH(s) for a solution base H in Ge:

➜ f1 is a recursive evaluation function.

➜ Using an additive cost measure, algorithm GBF* becomes Algorithm AO*.

S:III-249 Informed Search © STEIN/LETTMANN 1998-2020

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/{search/unit-en-informed-bf2.pdf}#relation-algorithm-bf

Remarks:

❑ If Ĉ is based on a recursive cost function involving a monotone cost measure, the
determination of a most promising solution base H can happen bottom-up along with the
computation of Ĉ(n) for n in G, simply by propagating the cheapest cost of the nodes and
storing the source of this cheapest cost.

❑ The bottom-up propagation yields a minimal solution graph (or solution base) for each node
in Ge.

❑ Leaf nodes in Ge are nodes on OPEN that are either solved rest problems or nodes that are
currently not labeled “unsolvable”.

❑ Recall that ĈH(s) computes the estimated solution cost for a given solution base H. If h is
optimistic and if, in addition, F is monotone, then f1(H) (defined as ĈH(s)) is optimistic for all
solution bases H.
A proof of this claim is given in the lab class.

S:III-250 Informed Search © STEIN/LETTMANN 1998-2020

Evaluation of AND-OR Graphs
Taxonomy of Best-First Algorithms

GBF

AO*

F[E(n),CH(n1),..,CH(nk)]

 = E(n)+CH(n1)+..+CH(nk)

additive cost measure:

delayed
termination

f1 defined by recursive
cost function

f1 defined by
recursive cost function

delayed
termination

GBF*

BF* Z

Z*

A*

additive cost measure:
F[e,c] = e + c
⇒
f(n) = g(n) + h(n)
with g(n') = g(n) + c(n, n')
and g(s) = 0

delayed
termination

f defined by recursive
cost function

f defined by
recursive cost function

delayed
termination

BF

state-space graph,
irrevocable path discarding

S:III-251 Informed Search © STEIN/LETTMANN 1998-2020

	TOC Informed Search Pt. 5

