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Planning Algorithms
Properties

q Soundness

A planning algorithm is sound if the plans found are solution plans for the
given planning problem, i.e., the plan is applicable in the initial state and can
lead to a state that satisfies the goal.

q Completeness

A planning algorithm is complete when it finds a plan that solves the planning
problem, if such a plan exists.

q Optimality

A planning algorithm is optimal if the found plans are optimal (e.g., minimal
with respect to length or cost) among all plans that solve the planning
problem.

(Optimality is usually neglected.)
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Planning Algorithms
Approaches and Restrictions

q Linear Planning vs. Non-linear Planning

Goals are processed one after the other in a fixed order. In non-linear planning, goals can be
interleaved (interleaving, goal set instead of goal stack).

Linear planning is possible if goals can be achieved independently of each other, i.e. no
operation to reach a goal blocks other goals.

a c

db

�
b d

ca

q Progression vs. Regression

Search for a plan can be carried out forward from the initial state or backward from a goal.
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Planning Algorithms
Approaches and Restrictions (continued)

q Totally Ordered Plans vs. Partially Ordered Plans

Plans can be constructed as sequences of actions. However, plans can also be created as
linearizations of a set of actions with order constraints, whereby the number of actions and
constraints are gradually increased.

Not every total order of operations from partial plans to reach individual goals lead to the
overall goal, in particular, subplans must be interleaved if necessary.
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q State Space Search vs. Plan Space Search

In a state space, the search space graph is formed by states with actions as edges, in the
plan space, the search space graph consists of plans with plan transformations as edges.
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Planning Algorithms
Planning as State Space Search

q The search space graph is formed by

– state resp. sets of states (given by state descriptions) as nodes and
– applicable actions (instances of operators) as edges defining the

successor states.

q A plan is defined by a directed path from the initial state to a state that
satisfies the required goal.

q Examples of planning algorithms

– Forward Search (starting from the initial state in direction to goal states)
(Forward Planning, Forward Search, Progression Planning)

– Backward Search (starting from the goal in direction to a description
satisfied by the initial state)
(Backward Planning, Backward Search, Regression Planning)

– Recursive STRIPS-Planning
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Planning Algorithms
Planning as Plan Space Search

q The search space graph is formed by

– partial plans (set of partially instantiated operators and order constraints
for operators) as nodes and

– possible extensions of partial plans as edges.

q A linear plan can be generated from the information in a target node.

q Examples of planning algorithms

– Partial-Order Planning
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Planning Algorithms
HTN Planning

q HTN Planning aims to process a set of tasks, taking into account constraints
for the order and properties of the states.

q The search space graph is formed by

– hierarchical task networks as nodes and
– network transformations by task decompositions as edges.

q Examples of planning algorithms

– Total-Order Forward Decomposition
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Remarks:

q Further reading:

– Jörg Hoffmann. Everything You Always Wanted to Know About Planning (But Were
Afraid to Ask), in: Proceedings of the 34th Annual German Conference on Artificial
Intelligence (KI’11), 2011 (PDF)
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State-Space Planning
Forward Search in State Spaces (Progression Planning)

To create a plan for a goal, we look at the initial state and try to reach a state that
satisfies the goal by using actions.

Nondeterministic algorithm:

1. Start with an empty plan p from the initial state sinit .

2. While the current state does not satisfy the goal conditions g do:

(a) If no action can be applied, then return Failure.

(b) Choose an applicable action (i.e. an operator with a ground instantiation
that forms an applicable action).

(c) Add the action to the end of the plan p.

(d) Determine the successor state of the action and use it as new current
state.

3. Return the plan p.
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State-Space Planning
Forward Search in State Spaces (Progression Planning) (continued)

q Forward Search is sound.
If a plan is returned , this plan solves the planning problem at hand.

q Forward Search is complete.
If a plan exists that is a solution to the planning problem, then such a plan can
be found by the non-deterministic algorithm.

q Deterministic implementations of Forward Search:
– Breadth-First Search

(sound and complete; terminates if cycles are pruned; space requirement exponential in
size of problem)

– Depth-First Search
(sound; complete when used with iterative deepening or cycles are pruned; space
requirement linear in size of problem)

– Greedy Search
(sound; usually not complete; space requirement linear in size of problem)

– Best-First Search (BF*, A*)
(sound; complete under certain restrictions; space requirement exponential in size of
problem)
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Remarks:

q From a search perspective, there is no need to explicitly represent a plan, since plans
correspond to the backpointer paths. The applicability of actions in a plan is guaranteed by
construction.

q Examples of forward search planning systems:

– Blair Bonet, Hugh Geffner. HSP: Heuristic Search Planner, in:AIPS-98 Planning
Competition (1998)

– Burkhard Nebel. The FF Planning System: Fast Plan Generation Through Heuristic
Search, in: Journal of Artificial Intelligence Research 14 (2001), pp. 253-302

– Malte Helmert. The Fast Downward Planning System, in: Journal of Artificial Intelligence
Research 26 (2006), pp. 191-246
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State-Space Planning
Example: Forward Search in Blocks World

State space
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State-Space Planning
Heuristics by Simplified Models

Simplified models for a problem domain can be constructed by:

q Constraint Relaxation

Relaxation of a model is the removal of constraints that prohibit the use of
operators.

Ü Cost of an optimum solution for the simplified problem can be used as an
estimate of optimum remaining cost.

q Overconstraining

Additional constraints, e.g. fixing the initial part of solution paths, result in less
complex models.

Ü Solution cost for such a model can be used as upper bounds for C*.
(Pruning)

Both types of simplifications should result in models for which the problem can be
solved easily. However, this effect cannot be guaranteed.

MK:VI-72 Planning and Configuration © LETTMANN 2007-2021



State-Space Planning
Example: Model Simplification for the 8-Puzzle Problem

STRIPS specification:

q Constants: t1, . . . , t8 for tiles and c1, . . . , c9 for cells.

q Predicates:

on(x, y) denotes tile x is in cell y.
clear (y) denotes cell y is empty.
adjacent(y, z) denotes cell z is adjacent to cell y.

q Initial state:

{adjacent(c1, c2),adjacent(c2, c3), . . . ,on(t5, c1),on(t2, c2), . . . , clear (c5)}

q Operator:

operator : move(x, y, z): (move tile x from cell y to cell z)
precond : on(x, y), clear (z),adjacent(y, z)
effects : on(x, z), clear (y),¬on(x, y),¬clear (z)
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State-Space Planning
Example: Model Simplification for the 8-Puzzle Problem (continued)

Admissible heuristic functions:

h1 number of misplaced tiles,
h2 sum of Manhattan distances of misplaced tiles.

Q. Why is the admissibility of h1 and h2 so easy to see?

q Property h(n) ≤ h∗(n) has to be checked for all board configurations n of the
8-puzzle.

q h∗(n) is unknown.
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State-Space Planning
Example: Model Simplification for the 8-Puzzle Problem (continued)

Admissible heuristic functions:

h1 number of misplaced tiles,
h2 sum of Manhattan distances of misplaced tiles.

Q. Why is the admissibility of h1 and h2 so easy to see?

q Property h(n) ≤ h∗(n) has to be checked for all board configurations n of the
8-puzzle.

q h∗(n) is unknown.

Simplification of rules:

q Simplification 1:
Ignore that cells may be occupied. Ü h2

q Simplification 2:
Ignore that cells may be occupied and allow arbitrary moves. Ü h1

MK:VI-75 Planning and Configuration © LETTMANN 2007-2021



State-Space Planning
Example: Model Simplification for the 8-Puzzle Problem (continued)

Relaxation of operator preconditions by deleting atoms:

1. Deletion of clear (z),adjacent(y, z).
A tile can be placed directly on its target position, whether free or not.

Ü Heuristic function h1 (number of misplaced tiles)

2. Deletion of clear (z).
A tile can move to its target position without having cells to be empty in
between.

Ü Heuristic function h2 (sum of Manhattan distances)

3. Deletion of adjacent(y, z).
A tile can be placed directly on the empty cell (Swap-Sort).

Ü New heuristic function h3 (≤ 1.5 × number of misplaced tiles)

Relaxation of operator preconditions by adding atoms to states:

4. Allowing diagonal moves (additional adjacent(y, z) predicates in states).

Ü Searching for optimum solution paths in the relaxed problem is not trivial.
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Remarks:

q A worst case scenario for the swap-sort approach is that we have only pairs of tiles that need
to swap positions. Each swap takes three moves.

q Additional deletions can be considered when reformulating the 8-puzzle problem, e.g. by

adjacent(x, y)⇔ neighbor(x, y) ∧ (same_row(x, y) ∨ same_column(x, y))

MK:VI-77 Planning and Configuration © LETTMANN 2007-2021



State-Space Planning
Example: Model Simplification for the 8-Puzzle Problem (continued)

q Trivial observation:
Optimum solution cost for relaxed problems is an admissible estimate for
optimum solution cost in the 8-puzzle model.

Justification:

Applicability of operators is increased in the relaxed models. All action sequences for the

8-puzzle model will also be considered for the relaxed models. Therefore, optimum solution

cost in relaxed models is not greater than optimum solution cost in the original model.

q Not so trivial observation:
Optimum solution cost for relaxed problems is a monotone estimate for
optimum solution cost in the 8-puzzle model.

Justification:

Optimum solution cost is no estimate in the relaxed problems.

Ü Real question:
When is an optimum solution efficiently computable in a relaxed model?
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State-Space Planning
Generation of Heuristics by Simplified Models

Criteria for the recognition of easy problems

q Decomposability of subgoals

Subgoals can be solved independently, i.e. each subgoal can be satisfied by some actions
without undoing the effect of previous actions and without affecting the applicability of future
actions.

(See relaxation approach 1 for the 8-puzzle problem.)

q Partial order of subgoals

Subgoals can be ordered in such a way that the solution of a subgoal no longer affects a
subgoal that has already been solved.

(See relaxation approach 3 for the 8-puzzle problem.)

q Commutativity of operators

The internal order at which a given set of operators is applied does not alter the set of
operators applicable in the future.

(The greedy algorithm "cheapest-subgoal-first" can be used to achieve an optimal solution.)
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State-Space Planning
Example: Model Simplification for the 8-Puzzle Problem (continued)

Relaxation of operator preconditions by deleting atoms:

1. Deletion of clear (z),adjacent(y, z): Decomposability

A conjunction of predicates on(Xi, Cj) defines the goal state. When using this relaxation,

each target condition on(Xi, Cj) represents an independently solvable subproblem –

immediate placement of the tile in its target cell.

2. Deletion of clear (z): Decomposability

Each target condition on(Xi, Cj) represents an independently solvable subproblem. Action

sequences for subgoals can be executed sequentially.

3. Deletion of adjacent(y, z): Partial Order

Subgoals and their associated operators can be ordered such that the operators designated

for any subgoal may influence only subgoals of higher order, leaving all other subgoals

unaffected. Establishing the correct position of the empty cell is a subgoal of a higher order

than all the other subgoals and should, therefore, be attempted last.
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State-Space Planning
Backward Search in State Spaces (Regression Planning)

q Instead of starting with the initial state, we could start with the goal
description in order to add only "necessary" actions to a plan.

q Backward search does not work with states (sets of positive literals only) like
forward search but with goals (sets of positive and negative literals).
Goals (no CWA) can be understood as partially defined states (with CWA).

q The starting point of backward search is the inverse of the state transition
relation (weakest precondition):

g′
a−→
−1
g holds iff g is a minimal goal such that

a is applicable for all states s satisfying g and
the corresponding successor states s′ satisfy g′.

The search space graph is described by the goal goal as start node and the
inverse transition relation T−1.

q As in the case of forward search, deterministic implementations can be
specified for the search in this search space graph.
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State-Space Planning
Backward Search in State Spaces (Regression Planning)

q Instead of starting with the initial state, we could start with the goal
description in order to add only "necessary" actions to a plan.

q Backward search does not work with states (sets of positive literals only) like
forward search but with goals (sets of positive and negative literals).
Goals (no CWA) can be understood as partially defined states (with CWA).

q The starting point of backward search is the inverse of the state transition
relation (weakest precondition):

g′
a−→
−1
g holds iff g is a minimal goal such that

a is applicable for all states s satisfying g and
the corresponding successor states s′ satisfy g′.

The search space graph is described by the goal goal as start node and the
inverse transition relation T−1.

q As in the case of forward search, deterministic implementations can be
specified for the search in this search space graph.
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State-Space Planning
Backward Search in State Spaces (Regression Planning)

q Instead of starting with the initial state, we could start with the goal
description in order to add only "necessary" actions to a plan.

q Backward search does not work with states (sets of positive literals only) like
forward search but with goals (sets of positive and negative literals).
Goals (no CWA) can be understood as partially defined states (with CWA).

q The starting point of backward search is the inverse of the state transition
relation (weakest precondition):

g′
a−→
−1
g holds iff g is a minimal goal such that

a is applicable for all states s satisfying g and
the corresponding successor states s′ satisfy g′.

The search space graph is described by the goal goal as start node and the
inverse transition relation T−1.

q As in the case of forward search, deterministic implementations can be
specified for the search in this search space graph.
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Remarks:

q When a goal is called minimal in the sense of "Weakest Preconditions" has been left open
here. In the presented simple case of regression planning it is possible to use as
minimization criterion the number of positive and negative literals contained in the goal.

q While forward search could insert actions into the plan that are not useful, backward search
actions appear to be "necessary" for reaching the goal.
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State-Space Planning
Regression Planning

To create a plan for a list of goal literals, we try to achieve all the literals
simultaneously, i.e., beginning a plan from the end.

Nondeterministic algorithm:

1. Start with an empty plan p from the given goal g.

2. While the current goal conditions are not all satisfied in the initial state sinit do:

(a) Choose a subgoal. // Even a subgoal satisfied in sinit can be chosen.
(b) If no action can achieve this subgoal, then return Failure.
(c) Choose an action that achieves this subgoal (i.e. an operator with a

ground instantiation that forms an action achieving the subgoal).
(d) Insert this action at the beginning of the plan p.
(e) The new goal is a weakest precondition of the current goal,

i.e. a minimum set of facts describing states in which the selected action is
executable, so that all current goal conditions are satisfied in the
successor state.

3. Return the plan p.
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Remarks:

q When assuming that subgoals can be solved independently, we should distinguish between
"selection" (of an unfulfilled subgoal) and "choice" (of an action). In this case, it is only a
strategic decision which subgoal is to be used next, all subgoals must be met anyway.
Different choices for an action, however, may lead to different results e.g. success or failure.
Therefore, nondeterminism is in the choices, not in selections.
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State-Space Planning
Example: Regression Planning in Blocks World

q Constants: a, b, c, d

q Predicates: on(x, y),ontable(x),holding(x), clear(x),handempty()

q Operators:
. . .
operator: unstack(x, y)

precond : on(x, y), clear(x),handempty()

effects: holding(x), clear(y),¬on(x, y),¬clear(x),¬handempty()

q Goal: {holding(b), clear(c)}

Operator unstack(x, y) can achieve subgoal holding(b).

q Determining Weakest Preconditions:

1. Substitution: [x/b, y/c] Action: unstack(b, c)

New goal: {on(b, c), clear(b),handempty()}

2. Substitution: [x/b, y/a] Action: unstack(b, a)

New goal: {on(b, a), clear(b), clear(c),handempty()}

3. Substitution: [x/b, y/d] Action: unstack(b, d)

New goal: {on(b, d), clear(b), clear(c),handempty()}
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State-Space Planning
Determining Weakest Preconditions

Definition 7 (Regression of a Literal, Weakest Precondition)

Let a STRIPS model S = (C,P,O) be given. Let g be a goal description in S, i.e. a
finite set of variable-free literals. Further, let a be an action, i.e. a ground instance of
an operator in O.

The regression regression(l, a) of a literal l ∈ g for a is defined as

regression(l, a) =


true l ∈ effects(a)
false ¬l ∈ effects(a)
l otherwise

The weakest precondition wp(g, a) of g for a is defined as

wp(g, a) = {regression(l, a) | l ∈ g} ∪ precond(a)
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Remarks:

q For simplicity, the positive literal is often referred to as ¬l for a negated literal l.

q A literal true in a Weakest Precondition is satisfied in every state. We can omit it.

q A literal false in a Weakest Precondition cannot be satisfied in any state. Therefore, a
weakest precondition containing false can be seen as a dead end. Search can be aborted for
the current plan.

q If a literal occurs positively and negatively in the effects of an action, we just consider the
positive occurrence (following the STRIPS commitment "First delete, then add." in action
application).

q When applying an action to a legal state, the successor state should be legal as well
(assuming an appropriate STRIPS model). However, when determining the weakest
precondition of an action, inconsistent partial state descriptions may occur.
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State-Space Planning
Example: Regression Planning in Blocks World (continued)

q Constants: a, b, c, d

q Predicates: on(x, y),ontable(x),holding(x), clear(x),handempty()

q Operators:
. . .
operator: stack(x, y)

precond : holding(x), clear(y)

effects: on(x, y), clear(x),¬clear(y),¬holding(x),handempty()

q Goal: {on(b, c),on(a, b)}

Operator stack(x, y) can achieve subgoal on(b, c).

q Determining the "Weakest Precondition":

Substitution: [x/b, y/c]

Action: stack(b, c)

Weakest Precondition: {holding(b), clear(c),on(a, b)}

Ü Weakest precondition cannot be satisfied: semantic inconsistency!
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State-Space Planning
Example: Regression Planning in Blocks World (continued)

q Constants: a, b, c, d

q Predicates: on(x, y),ontable(x),holding(x), clear(x),handempty()

q Operators:
. . .
operator: pickup(x)

precond: ontable(x), clear(x),handempty()

effects: holding(x),¬ontable(x),¬clear(x),¬handempty()

operator: putdown(x)

precond : holding(x)

effects: ontable(x), clear(x),handempty(),¬holding(x)

q Goal: {holding(a), clear(b),on(b, c)}

q Action pickup(x) achieves subgoal holding(a) by substitution [x/a]

Weakest Precondition: {ontable(a), clear(a),handempty(), clear(b),on(b, c)}

q Action putdown(x) achieves subgoal clear(a) by substitution [x/a]

Weakest Precondition: {holding(a), clear(b),on(b, c)}

Ü Cycle in the sequence of weakest preconditions!
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Remarks:

q Semantic inconsistencies typically result from incomplete or inadequate modeling. Syntactic
inconsistencies are easily recognized: the literal "false" or the same literal occurring
negatively and positively in a weakest precondition indicate a dead end.

q To detect cycles, it is not enough to determine whether goals occur more than once. Since
goals are only partially defined states, the backward search can generate supersets of
previous goals. However, supersets of a goal do not represent progress.

q In a backward search avoiding nonsense actions such as unstack(a, a) is enormously
important. By inserting additional constraints in the precond part, in the example x 6= y,
undesired specializations can be avoided. A consistency test of all variable-free
(in-)equations is easy because of the Unique Name Assumption.

q Please note that x 6= y is a literal with predefined semantics. Using equality in STRIPS as
predicate symbol therefore leads to a more complex planning language. In the context of
regression planning without lifting, however, we can avoid the equality symbol by adding
preconditions ¬equal(x, y) to operator descriptions and literals equal(c, c) for all constants c
to state descriptions.
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State-Space Planning
Regression Planning (continued)

q Plans from Regression Planning

A plan is returned in Regression Planning if the current goal is satisfied in the
initial state. By definition of weakest preconditions and by construction of the
plan, the action sequence is applicable to the initial state.

q Regression Planning is sound.

If a plan is returned, this plan solves the planning problem at hand.

q Regression Planning is complete.

If a plan exists that is a solution to the planning problem, then such a plan can
be minimized by eliminating actions that are not needed to reach the goal. A
minimal plan can be found by Regression Planning.
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State-Space Planning
Example: Regression Planning in Blocks World (continued)

q Constants: a, b, c, d

q Predicates: on(x, y),ontable(x),holding(x), clear(x),handempty()

q Operators:
. . .
operator: unstack(x, y)

precond : on(x, y), clear(x),handempty()

effects: holding(x), clear(y),¬on(x, y),¬clear(x),¬handempty()

q Goal: {holding(b), clear(c)}

q Operator: unstack(b, y)

Necessary Substitution: [x/b] (Least Commitment)

Determining Weakest Preconditions:

New Goal: {on(b, c), clear(b),handempty()}
or
New Goal: {on(b, y), y 6= c, clear(b), clear(c),handempty()}

Ü Lifting (= Partial Instantiation, Lifting to First Order Logic)
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State-Space Planning
Lifted Regression Planning in State Spaces

q When using lifting, goal descriptions must be allowed to contain variables.

q A new set of variables has to be used for an operator each time it is applied
for generating a subgoal.

q In order to avoid redundancies (overlapping of different goal descriptions),
inequalities for variables and constants can occur in goal descriptions.

Definition 8 (Lifted STRIPS Goal)

Let a STRIPS model S = (C,P,O) be given.

A lifted STRIPS goal g is described by a finite set (i.e. conjunction) of literals and a
finite set of inequalities.

A lifted goal g is satisfied (or achieved) modulo some substitution σ in a state s if
applying the substitution σ to g results in a goal (i.e. variable-free set of literals) that
has only true equalities w.r.t. UNA and DC and for which all other literals are
satisfied in s.

A lifted plan is a list of partially instantiated operators.
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Remarks:

q If a lifted goal is satisfied modulo some substitution, the substitution has to replace all
variables in the goal by constants.
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State-Space Planning
Lifted Regression Planning in State Spaces (continued)

Instead of looking at ground instances for operators, as with backward searches,
the operators are specialized by substitutions only to the extent necessary to reach
a goal.

Nondeterministic algorithm:

1. Start with an empty plan p and an empty substitution σ from the given goal.

2. While there is no extension of σ such that all the current goal conditions are satisfied in the
initial state sinit do:

(a) Choose a subgoal. // A subgoal satisfied modulo substitution in sinit can be chosen.
(b) If no action can achieve this subgoal, then return Failure.
(c) Choose an instantiation of an operator (usually not ground, but with new variable names)

that achieves this subgoal, extending σ when needed.
(d) Insert this partially instantiated operator at the beginning of the plan p.
(e) The new goal is a weakest precondition of the current goal,

i.e. a minimum set of facts describing states in which the selected partially instantiated
operator is "executable", so that all current goal conditions are satisfied in the successor
state.

3. Return the plan p substituted by an extension σ′ of σ such that σ′(p) is variable-free and the
current goal modulo σ′ is satisfied in sinit .
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Remarks:

q After termination of the above algorithm, not all variables occurring in the lifted plan may have
been substituted by constants via σ. Here, some arbitrary replacement can be done that is
meaningful at time of execution. But usually, this is an indicator of bad modeling or of some
strange domain.
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State-Space Planning
Determining Lifted Weakest Preconditions

Definition 9 (Lifted Regression of a Literal, Lifted Weakest Precondition)
Let a STRIPS model S = (C,P,O) be given. Let g be a goal description in S for lifting, i.e. a finite set
of literals an inequalities. Let o be an operator with variables renamed to o(x1, ..., xm) where x1, ..., xm
are new variables. Let σ be some substitution of variables in g and o(x1, ..., xm).

Further,

q let σ1, . . . , σu be the most general unifiers such that l is achieved,
i.e. σi(σ(l)) ∈ effects(σi(σ(o))).

q let σu+1, . . . , σu+v be the most general unifiers such that l is contradicted,
i.e. σi(σ(¬l)) ∈ effects(σi(σ(o))).

The regression regression(l, o(x1, ..., xm), σ′ ◦ σ) of a literal l ∈ g for o w.r.t. σ′ ◦ σ is defined as

regression(l, o(x1, ..., xm), σ′ ◦ σ)

=


true (a) σ′ = σi for some i = 1, . . . , u
false (b) σ′ = σj for some j = u+ 1, . . . , u+ v
σ(l), y1 6= σ1(y1), . . . , yu+v 6= σ(yu+v) (c) σ′ = [ ] and there is a choice of(y1, . . . , yu+v)

such that y1 6= σ1(y1), . . . , yu+v 6= σu+v(yu+v)

The lifted weakest precondition wp(g, a, σf) of g for o is made up of the preconditions of
σf(o(x1, . . . , xm)) and the result of iteratively applying the above single step definition for g subgoal
by subgoal. In the first step an empty substitution is used as σ. Then, the resulting substitution of the
previous step is used as σ in the next step, finally resulting in σf .
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Remarks:

q An MGU (most general unifier) σ′ is a substitution that unifies two literals l and l′ (i.e.
σ′(l) = σ′(l′)) by substituting a minimum number of variables by terms. A MGU is unique (up
to renaming of variables) if the literals can be unified.

q Note that each operation is applied with new variable names that have not been used before
(i.e. instead of o(x1, ..., xm) from the STRIPS specification use o(x′1, ..., x′m) with variables
x′1, ..., x

′
m that have not been used so far). Otherwise, the specific MGUs would be too special.

q For the selection of variables for the prohibition of certain MGUs (selection of (y1, . . . , yu+v) in
definition 9) there are only finitely many possibilities, because only finitely many variables can
be changed in a MGU of two formulas. Selecting an unmodified variable results in a x 6= x
condition that can never be met, so such cases don’t have to be considered.

q Definition 9 describes the different choices for substitutions per literal. By regressing all
literals of the current goal one by one, a final substitution is constructed.

q The determination of regression by means of an operation with lifting allows different
alternatives. All these alternatives have to be considered successively by a deterministic
procedure.
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State-Space Planning
Determining Lifted Weakest Preconditions (continued)

q The operation o and an initial substitution σ results from the selection of a
literal from the current target s, which can be reached with the operation o
using σ.

q The various alternative weakest preconditions are obtained by applying one
of the regressions (different choices for σ′ resp. for (y1, . . . , yu+v) in
definition 9) for each additional literal of the current target and adding the
preconditions o with the final substitution.

Ü The number of alternative regressions is related to the number of literals in
effects(o). Different plans result from different operator selections and
instantiations.

Ü Since goals can contain variables during regression planning with lifting, they
combine a large number of possible goals that would result from using ground
instances of operators. The branching degree of the search space is
therefore lower with Lifting.
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State-Space Planning
Example 1: Lifted Weakest Preconditions in Blocks World

q Current goal: {clear(c),holding(b)}

q Selected subgoal: holding(b)

q Selected operator: unstack(x, y) with substitution σ = [x/b]

operator: unstack(x, y)
precond : on(x, y), clear(x),handempty()
effects: holding(x), clear(y),¬on(x, y),¬clear(x),¬handempty()

q Regression of clear(c) using unstack(x, y) and σ = [x/b]

Case (a): An extension of the substitution by [y/c] returns this goal formula as an effect. The
resulting substitution then is [x/b, y/c]. Case (b): ¬clear(.) is not contained in
effects(unstack(x, y)). So, this case cannot occur.
Case (c): Since there is only one substitution for case (a), clear(c) and y 6= c have to be
added to the weakest precondition.
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State-Space Planning
Example 1: Lifted Weakest Preconditions in Blocks World (continued)

unstack(x,y) with σ = [x/b]

a b c

σ1 = [y/c]

true

X

clear(c), y ≠ c

not σ1

σ'1 = [ ]

true

not σ'1

collect all and
add precond

clear(c), holding(b)

on(b,c), clear(b),
handempty()

clear(c), y ≠ c, 
on(b,y), clear(b),
handempty()

a b c

X
X

σ'1 = [ ]

true

not σ'1

collect all and
add precond

a b c

X
X

unstack(x,y)
on(x,y), clear(x), handempty()
holding(x), clear(y), ¬on(x,y),
¬clear(x), ¬handempty()

operator:
  precond :
  effects :   

produced with σ = [x/b] byholding(b)

Alternative Weakest Preconditions

Goal
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State-Space Planning
Example 1: Lifted Weakest Preconditions in Blocks World (continued)

Comparison with regression without lifting for unstack(x, y):

unstack(x,y) with σ = [x/b]

a b c

σ1 = [y/c]

true

X

clear(c), y ≠ c

not σ1

σ'1 = [ ]

true

not σ'1

collect all and
add precond

clear(c), holding(b)

on(b,c), clear(b),
handempty()

clear(c), y ≠ c, 
on(b,y), clear(b),
handempty()

a b c

X
X

σ'1 = [ ]

true

not σ'1

collect all and
add precond

a b c

X
X

unstack(b,y)-1 with y ≠ c

unstack(b,c)-1

With Lifting

unstack(x,y)
on(x,y), clear(x), handempty()
holding(x), clear(y), ¬on(x,y),
¬clear(x), ¬handempty()

operator:
  precond :
  effects :   

unstack(b,c)-1

clear(c), holding(b)

on(b,c), clear(b),
handempty()

clear(c), 
on(b,a), clear(b),
handempty()

clear(c), 
on(b,b), clear(b),
handempty()

clear(c), 
on(b,d), clear(b),
handempty()

unstack(b,a)-1

unstack(b,b)-1

unstack(b,d)-1

Without Lifting

subsumed by
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State-Space Planning
Example 2: Lifted Weakest Preconditions in Blocks World

q Current goal: {holding(b),ontable(c), clear(a),¬clear(z)}

q Selected subgoal: holding(b)

q Selected operator: unstack(x, y) with substitution σ = [x/b]

operator: unstack(x, y)
precond : on(x, y), clear(x),handempty()
effects: holding(x), clear(y),¬on(x, y),¬clear(x),¬handempty()

q Regression of ontable(c) using unstack(x, y) and σ = [x/b]

Case (a), (b): Predicate ontable does not occur in effects(unstack(x, y)). So, for this literal we
only have case (c) for a regression.
Case (c): Since there are no substitutions for case (a) or (b), only ontable(c), but no inequality
is added to the weakest precondition.

q Regression of clear(a) using unstack(x, y) and σ = [x/b]

Case (a): An extension of the substitution by [y/a] returns this goal formula as an effect. The
resulting substitution then is [x/b, y/a]. Case (b): No substitution can provide the negated
goal formula. Case (c): The weakest precondition has to be be supplemented by clear(a) and
y 6= a.
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State-Space Planning
Example 2: Lifted Weakest Preconditions in Blocks World (continued)

q Current goal: {holding(b),ontable(c), clear(a),¬clear(z)}

q Selected subgoal: holding(b)

q Selected operator: unstack(x, y) with substitution σ = [x/b]

operator: unstack(x, y)
precond : on(x, y), clear(x),handempty()
effects: holding(x), clear(y),¬on(x, y),¬clear(x),¬handempty()

q Regression of ¬clear(z) by unstack(x, y) and σ = [x/b]

Case (a): An extension of the substitution by [z/b] returns the goal formula as an effect.
Case (b): An extension of the substitution by [z/y] returns the negated goal formula as an
effect.
Case (c): As a consequence, we have to add ¬clear(z), z 6= y, and z 6= b to the weakest
precondition.

q Regression of unstack(x, y) and σ = [x/b, z/b]

The resulting weakest precondition is in this case

{ontable(c), clear(a), y 6= a,on(b, y), clear(b),handempty()}

(y can be seen as existentially quantified variable when looking for states satisfying this
weakest precondition.)
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State-Space Planning
Example 2: Lifted Weakest Preconditions in Blocks World (continued)

holding(b) produced with  σ = [x/b]  by

Alternative
Weakest 
Preconditions

Goal
a b c

X not σ1

holding(b), ontable(c), clear(a), ¬ clear(z)

X
σ1 = []

true
a b c

XX

ontable(c)

n = 0

a b c

Xσ'1 = [y/a]

true
a b c

collect all and
add precond

ontable(c),
on(b,a), clear(b),
handempty()

σ''1 = [z/b]

true

not σ''1
not σ''2

¬ clear(z),
z ≠ b, z ≠ a

collect all and
add precond

ontable(c),
¬ clear(z),
z ≠ b, z ≠ a,
on(b,a), clear(b),
handempty()

X

σ''2 = [z/a]

false

not σ'1

clear(a), y ≠ a
a b c

collect all and
add precond

ontable(c),
clear(a), y ≠ a,
on(b,y), clear(b),
handempty()

σ''1 = [z/b]

true

not σ''1
not σ''2

¬ clear(z),
z ≠ b, z ≠ y

collect all and
add precond

ontable(c),
clear(a), y ≠ a,
¬ clear(z),
z ≠ b, z ≠ y,
on(b,y), clear(b),
handempty()

σ''2 = [z/y]

X
false

unstack(x,y)
on(x,y), clear(x), handempty()
holding(x), clear(y), ¬on(x,y),
¬clear(x), ¬handempty()

operator:
  precond :
  effects :   
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Remarks:

q It should be noted that substitutions for variables that already occur in the current goal have
an effect on the task list search carried out so far. The replacements must also be carried out
there, particularly in the current plan.
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State-Space Planning
Recursive STRIPS-Planning

Idea: To create a plan for a list of goals, select a sub-goal, create a plan to
achieve this goal, append a plan to it to achieve the remaining goals.

Nondeterministic algorithm:

1. Start with an empty plan p from the initial state sinit .

2. While the current state does not satisfy the goal conditions g do:

(a) Choose a subgoal that is not satisfied in the current state.

(b) If no action can achieve this subgoal, then return Failure.

(c) Choose an action that can achieve the subgoal.

(d) Recursion: Determine a subplan that starts from the current state and has the
preconditions of the selected action as goal.

(e) If no subplan was found, return Failure.

(f) Append the selected action to the subplan.

(g) Determine the successor state of the subplan and use it as new current state.

(h) Append the subplan to the plan p.

3. Return the plan p.
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Remarks:

q Recursive STRIPS planning uses a "divide and conquer" strategy.

q As there is no guarantee that subgoals con be achieved independently, plans that achieve
different subgoals can interfere with each other. In Recursive STRIPS Planning subgoals are
reestablished if they are destroyed by subsequent subplans. In such cases recursive STRIPS
planning will not find shortest plans.

q In Nilsson’s implementation of Recursive STRIPS Planning, there is no backtracking for parts
of the search that have already become part of the plan.
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State-Space Planning
Example: Sussman Anomaly in Blocks World

q Problem

c

ba

�

c

a

b

q Initial state: {clear (b), clear (c),on(c, a),handempty(),ontable(a),ontable(b)}

q Goal: {on(b, c),on(a, b)}
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State-Space Planning
Example: Sussman Anomaly in Blocks World

q Problem

c

ba

�

c

a

b

q Initial state: {clear (b), clear (c),on(c, a),handempty(),ontable(a),ontable(b)}

q Goal: {on(b, c),on(a, b)}

q Shortest plans for subgoal on(b, c) resp. on(a, b)

unstack(c,a) putdown(c) pickup(a) stack(a,b)

pickup(b) stack(b,c)on(b,c)

on(a,b)
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State-Space Planning
Example: Sussman Anomaly in Blocks World (continued)

q Shortest plans for subgoal on(b, c) resp. on(a, b)

unstack(c,a) putdown(c) pickup(a) stack(a,b)

pickup(b) stack(b,c)on(b,c)

on(a,b)

q Recursive STRIPS Planning:
Subgoal on(a, b) will be destroyed when considering on(b, c) afterwards.
Subgoal on(b, c) will be destroyed when considering on(a, b) afterwards..

Ü Recursive STRIPS Planning will not always return shortest plans.

q Shortest plan for {on(b, c),on(a, b)}

unstack(c,a) putdown(c) pickup(a)

pickup(b)

stack(a,b)

stack(b,c)
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Remarks:

q Alternatively to reestablishing them, subgoals could be protected against deletion by future
actions. But this approach can lead to incompleteness.
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State-Space Planning
Example: Register Swapping Problem

q Constants: m1,m2,m3, v1, v2, 0

q Predicates: contains(x, y)

q Operators:
operator: assign(x1, y1, x2, y2)

precond: contains(x1, y1), contains(x2, y2)

effects: ¬contains(x1, y1), contains(x1, y2)

q Initial state: {contains(m1, v1), contains(m2, v2), contains(m3, 0)}

q Goal: {contains(m1, v2), contains(m2, v1)}

q Plan: (assign(m3, 0,m2, v2),assign(m2, v2,m1, v1),assign(m1, v1,m3, v2))

m3

m1

m2

0

v1

v2

m3

m1

m2

0

v1

v2

Ü Nilsson’s deterministic version of Recursive STRIPS Planning (with Lifting)
cannot find a plan!
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Remarks:

q Nilsson’s implementation of the Recursive STRIPS Planning algorithm uses lifting. Backtrack
points in the procedure are the selection of a subgoal and the selection of the action to
achieve this subgoal. When using lifting and selecting a subgoal containing variables, this
subgoal may be found in the current state (loop condition) using an appropriate substitution.
Even in such cases the algorithm will not try to achieve the subgoal with an operator when
backtracking. (See also Nilsson: Principles of Artificial Intelligence, p. 298-307.)
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Plan-Space Planning
Differences to State-Space Planning

q State-Space Planning

– nodes = states /sets of states of the domain
– edges = state transitions by actions
– plan = path in the state space

q Plan-Space Planning

– nodes = incomplete plans
– edges = plan transformations
– plan = constructed from solution path in the plan space

Ü Partial-Order Planning is a plan-space planning algorithm that uses partial
plans, which are incomplete with respect to the actions contained and with
respect to the order of actions.

A least commitment strategy in form of lifting can be used.
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Remarks:

q Analogously to Lifted Backward Search in state spaces, Lifted Partial-Order Planning uses
variables in partial plans in order to describe sets of partial plans that differ only by some
constant values.

MK:VI-118 Planning and Configuration © LETTMANN 2007-2021



Plan-Space Planning
Prerequisites for Partial-Order Planning

Definition 10 (Partial Plan, Extension of Partial Plans)

Let a STRIPS model S = (C,P,O) be given.

A partial plan p = (A,R,L) consists of:

q a finite set A of action instances,
q a finite set R of order constraints a ≺ a′ defining a strict partial order on the

action instances in A, and
q a finite set L of causal links of the form (aeffects, l, aprecond) such that

– l is a literal in the language of S,
– aeffects ∈ A is an instance of an action with l as an effect,
– aprecond ∈ A is an instance of an action with l as a precondition, and
– aeffects ≺ aprecond is in R.

A partial plan (A′, R′, L′) is an extension of a partial plan (A,R,L) if A ⊆ A′, R ⊆ R′,
and L ⊆ L′.
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Remarks:

q Plans can contain multiple instances of the same action. Therefore, we have to distinguish
these instances in set A.

q Having a ≺ a′ as an order constraint means that action a has to be executed before action a′.
Therefore, R is a set of constraints for a strict order of the actions in A. R is consistent if there
is a strict total order of the actions in A that satisfies the constraints in R. Of course, R is
inconsistent if and only if the transitive closure of R contains a ≺ a for some a ∈ A.

q As causal links (aeffects, l, aprecond) justify an execution of aprecond after executing aeffects, causal
links should be consistent with the partial order, i.e. aeffects ≺ aprecond should be contained in R
for (aeffects, l, aprecond) ∈ L.

q In case of Lifted Partial-Order Planning, a partial plan additionally contains

– a finite set B of binding constraints of the form x = y and x 6= y.
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Plan-Space Planning
Prerequisites for Partial-Order Planning

Definition 11 (Plan Space for Partial-Order Planning)

Let a STRIPS model S = (C,P,O) and a STRIPS planning problem (S, sinit , cgoal) be
given.

We define actions start and finish that are new for S:

q start has an empty set of preconditions and the set sinit as positive effects.
According to the CWA we assume that for all positive literals l with l 6∈ sinit the
fact ¬l is an effect of start .

q finish has an empty set of effects and the set cgoal as precondition.

The partial plan pinit = (Ainit , Rinit , Linit) is defined by

q Ainit = {start , finish},
q Rinit = {start ≺ finish}, and
q Linit = ∅

The plan space for partial-order planning is made up of all partial plans that are
extensions pinit using only actions that are instances of operators in O.
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Plan-Space Planning
Example: Representation of a Partial Plan for a Blocksworld Problem

Partial Plan: Problem:

finish

not clear(b),   ontable(a)

start

clear(a), on(a,b), on(b,c), on(c,d), ontable(d), handempty()

not holding(a), handempty(),
clear(a), ontable(a)

putdown(a)

holding(a)

not handempty(), clear(b), 
holding(a), not clear(a), not on(a,b)

unstack(a,b)

handempty(), clear(a), on(a,b)

not handempty(), clear(d), 
holding(c), not clear(c), not on(c,d)

unstack(c,d)

handempty(), clear(c), on(c,d)

stack(c,b)

holding(c), clear(b)

not holding(c), handempty(),
clear(c), on(c,b), not clear(b)

c

a

b

d

�

c

adb

Initial state

Goal state
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Plan-Space Planning
Example: Representation of a Partial Plan for a Blocksworld Problem (continued)

q Action instantiations A:

Each action instantiation (including start and finish) is depicted in a separate box showing
operator name and parameter substitution, e.g., unstack(a, b) .

Action preconditions are listed above, action effects below the action box. The goal
description is given atop of the finish box, the initial state below the start box.

(Negated literals that are true in the initial state because of the CWA are usually not shown,
but can be added as needed. For simplicity, we use not instead of ¬ for negated literals.)

q Causal links L:

Each causal (aeffects, l, aprecond) in L is depicted as an arrow connecting the literal l in the
effects listing at the action box corresponding to aeffects and the same literal l in the
precondition listing at the action box corresponding to aprecond .

The causal link expresses that a precondition aprecond is satisfied because it is provided
by aeffects.

MK:VI-123 Planning and Configuration © LETTMANN 2007-2021



Plan-Space Planning
Example: Representation of a Partial Plan for a Blocksworld Problem (continued)

q Order constraints R:

– start ≺ finish, start ≺ a, and a ≺ finish

These order constraints are not represented explicitly. By drawing the action box for start
at the top, the action box for finish at the bottom and the boxes for any other action
instance a in between the two, these order constraints are expressed.

– aeffects ≺ aprecond for (aeffects, l, aprecond) in L

The order constraint is expressed already by the direction of the arrow depicting the
causal link. It is an arrow from a literal l in the effects listing of the action box for aeffects to
the same literal l in the precondition of the action box for aprecond .

– other order constraints a ≺ a′

Such an order constraint is depicted by an arrow directly from the action box for a to the
action box of a′.

These order constraints usually result from removing a threat. Therefore, these arrow are
often painted in red and sometimes have a dotted line connecting the arrow with the
causal link that was threatened.
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Plan-Space Planning
Example: Representation of a Partial Plan for a Blocksworld Problem (continued)

For the partial plan depicted we have

q A = { start ,unstack(c, d),unstack(a, b), stack(c, b),putdown(a), finish }

(In case of multiple instantiations of the same action, we add indices to the action names.)

q L = { (unstack(c, d),holding(c), stack(c, b)), (unstack(a, b),holding(a),putdown(a)),
(stack(c, b),¬clear(b), finish), (putdown(a),ontable(a), finish) }

q R = { start ≺ finish,

start ≺ unstack(c, d), unstack(c, d) ≺ finish,
start ≺ unstack(a, b), unstack(a, b) ≺ finish,
start ≺ stack(c, b), stack(c, b) ≺ finish,
start ≺ putdown(a), putdown(a) ≺ finish,

unstack(c, d) ≺ stack(c, b), unstack(a, b) ≺ putdown(a),
stack(c, b) ≺ finish, putdown(a) ≺ finish

unstack(a, b) ≺ stack(c, b) }
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Plan-Space Planning
Prerequisites for Partial-Order Planning

Definition 12 (Solution Plan for Partial-Order Planning)

A partial plan p = (A,R,L) in the plan space for a STRIPS planning problem
(S, sinit , cgoal) is a solution plan for (S, sinit , cgoal), if and only if

q the set of order constraints R is consistent, i.e. the transitive closure of R
does not contain a ≺ a for any a ∈ A, and

q any total ordering of actions in A conforming to R is a solution plan for
(S, sinit , cgoal).

The transitive closure R̄ of a relation R consists of R together with all inequalities a ≺ a′ that can be
derived form inequalities in R by a finite number of applications of the transitivity rule:

Transitivity rule:
If a ≺ a′ and a′ ≺ a′′ holds for some actions a, a′, a′′, then also a ≺ a′′ holds.

Example: A set R containing a ≺ a′, a′ ≺ a′′, and a′′ ≺ a is inconsistent.
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Plan-Space Planning
Prerequisites for Partial-Order Planning

Definition 13 (Threats and Flaws in Partial Plans)

Let p = (A,R,L) be a partial plan.

An action at, at ∈ A, is a threat on a causal link (a, l, a′), (a, l, a′) ∈ L, if

q at has an effect that is inconsistent with l, i.e., ¬l ∈ effects(at)
q and a ≺ at and at ≺ a′ is consistent with R.

A flaw in a partial plan p is

q either a missing causal link (a, l, a′) for a precondition l of some action instance
a′ in A, i.e., no causal link (a, l, a′) with some a ∈ A is contained in L,

q or the existence of a threat on a causal link (a, l, a′) in L.

For a threat, we have to check whether R ∪ {a ≺ at, at ≺ a′} is consistent or not.

Obviously, a threat can be eliminated by

q promotion: adding a′ ≺ at to R (applicable only if a′ is not finish) and
q demotion: adding at ≺ a to R (applicable only if a is not start).
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Plan-Space Planning
Partial-Order Planning

Starting from the initial partial plan, missing causal links are added one after the
other and threats resulting from these additions are immediately eliminated.

Nondeterministic algorithm:

1. Start with initial partial plan pinit for a STRIPS planning problem.

2. While there are flaws in the current partial plan p = (A,R,L) do:

(a) Select a precondition l of an action instance a′ in A for which there is no causal link in L.
(b) If no action (including the start action) can achieve this subgoal, then return Failure.
(c) Choose an action instance a in A or a new action instance a that achieves this subgoal (i.e.

an operator with a ground instantiation that forms an action achieving the subgoal).
(d) If a is new, add a to A. Add the ordering constraints a ≺ a′, start ≺ a, a ≺ finish to R.

Add the causal link (a, l, a′) to L.
(e) Any threat resulting from adding a new action instance or from adding the causal link is

eliminated by adding additional ordering constraints to R (choice of promotion or demotion
for each threat).

(f) If R is inconsistent, then return Failure.

3. Choose a total ordering of the actions in A conforming to R as a plan p′.

4. Return the plan p′.
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Remarks:

q Nondeterminism of this algorithm is in the choice of the action instances for missing causal links
and in the choice of promotion or demotion for the elimination of threats, but not in the selection
of the next missing link to be established. As all missing causal links have to be considered, this
is a strategic decision.

q The basic step in partial-order planning is

– establishing a new causal link and
– eliminating all emerging threats.

Such a step will eliminate a flaw, but new flaws may arise.

q At any point in time before termination (i.e., when the while loop is entered), the partial plan
created so far by Partial-Order Planning is consistent and safe.

q Implementations of Partial-Order Planning often make use of an agenda that collects all missing
causal links in form of pairs (l, a′) where a′ is an action instance in A and l is a literal in the
preconditions of a′ for which no causal link exists.

q In case of Lifted Partial-Order Planning, inconsistencies in the binding constraints B also lead to
Failure.
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Plan-Space Planning
Prerequisites for Partial-Order Planning

Definition 14 (Safe Plans, Consistent Plans)

A partial plan p = (A,R,L) is safe if A contains no threats to causal links in L.

A partial plan p = (A,R,L) is consistent if R is consistent.

Lemma 15

A consistent partial plan without flaws that was constructed by Partial-Order
Planning is a solution plan for the corresponding planning problem.

Proof of the lemma is by induction on the number of actions in A. [Ghallab/Nau/Traverso, p. 93]

Flaws in partial plans can be eliminated by

q adding causal links, possibly with new actions, for missing causal links,
q adding ordering constraints (adding at ≺ a, i.e. demotion, or adding a′ ≺ at, i.e. promotion) in

case of threats.

Eliminating flaws may lead to inconsistent plans.
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Remarks:

q In case of Lifted Partial-Order Planning, a literal l might contain variables. Then, a threat on a
causal link (a, l, a′) may only be provoked by using a specific substitution. This substitution has
to be consistent with the binding constraints.

q In case of Lifted Partial-Order Planning, for a solution path the set of binding constraints has to
be consistent as well. For the paths defined by a partial plan, all ground instances have to be
considered.

q In case of Lifted Partial-Order Planning, a threat can be eliminated also by separation: adding
binding constraints to B such that the threat is eliminated.
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Plan-Space Planning
Partial-Order Planning (continued)

q Plans from Partial Plans

A plan can be generated from a consistent partial plan by a topological sorting
of the action instances in A conforming to R.

q Partial-Order Planning is sound.

If a plan is returned, this plan solves the planning problem at hand.

q Partial-Order Planning is complete.

If a plan p exists that is a solution to the planning problem, then a partial plan
can be found by the non-deterministic algorithm such that (an optimized version
of) this plan p corresponds to a topological sorting of the action instances in A
conforming to R.
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Remarks:

q Examples of partial-order planning planning systems:

– J. Scott Penberthy, Daniel S. Weld. UCPOP: A Sound, Complete, Partial-Order Planner for
ADL, in: Proc. 3rd Int. Conf. on Principles of Knowledge Representation and Reasoning (KR
92), pp. 103-114
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Plan-Space Planning
Example: Partial-Order Planning for the Sussman Anomaly

q Constants: a, b, c, floor
q Predicates: on(x, y), clear(x)

q Operators:
operator : move(x, y, z)

precond : on(x, y), clear(x), clear(z)

effects : ¬on(x, y),¬clear(z),on(x, z), clear(y), clear(floor)

q Initial state: {on(c, a), clear(floor), clear(c),on(a, floor), clear(b),on(b, floor)}
q Goal: {on(a, b),on(b, c)}

q Initial partial plan:

– Additional actions:
action : start()

precond :

effects : on(c, a), clear(floor), clear(c),on(a, floor), clear(b),on(b, floor)

action : finish()
precond : on(a, b),on(b, c)

effects :

– A = {start(), finish()}
– R = {start() ≺ finish()}
– L = ∅
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Plan-Space Planning
Example: Partial-Order Planning for the Sussman Anomaly (continued)

finish

on(a,b),       on(b,c)

start

on(c,a), clear(floor), clear(c), on(a,floor), clear(b), on(b,floor)
c

ba

c

a

b
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Plan-Space Planning
Example: Partial-Order Planning for the Sussman Anomaly (continued)

finish

on(a,b),       on(b,c)

start

on(c,a), clear(floor), clear(c), on(a,floor), clear(b), on(b,floor)
c

ba

c

a

b

not on(b,floor), not clear(c)
on(b,c), clear(floor)

move(b,floor,c)

clear(c), clear(b), on(b,floor)
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Plan-Space Planning
Example: Partial-Order Planning for the Sussman Anomaly (continued)

finish

on(a,b),       on(b,c)

start

on(c,a), clear(floor), clear(c), on(a,floor), clear(b), on(b,floor)
c

ba

c

a

b

not on(b,floor), not clear(c)
on(b,c), clear(floor)

move(b,floor,c)

clear(c), clear(b), on(b,floor)

move(b,floor,c)

⇒ Resolved by 
     putting behind

threatens clear(b)
move(a,floor,b)

move(a,floor,b)

clear(a), on(a,floor), clear(b)

not on(a,floor), not clear(b)
clear(floor), on(a,b)
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Plan-Space Planning
Example: Partial-Order Planning for the Sussman Anomaly (continued)

finish

on(a,b),       on(b,c)

start

on(c,a), clear(floor), clear(c), on(a,floor), clear(b), on(b,floor)
c

ba

c

a

b

not on(b,floor), not clear(c)
on(b,c), clear(floor)

move(b,floor,c)

clear(c), clear(b), on(b,floor)

move(b,floor,c)

⇒ Resolved by 
     putting behind

threatens clear(b)
move(a,floor,b)

move(a,floor,b)

clear(a), on(a,floor), clear(b)

not on(a,floor), not clear(b)
clear(floor), on(a,b)

move(c,a,floor)

⇒ Resolved by 
     putting behind

threatens clear(c)

move(b,floor,c)

move(c,a,floor)

on(c,a), clear(c), clear(floor)

not on(c,a), not clear(floor)
clear(a), on(c,floor), clear(floor)
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Plan-Space Planning
Example: Partial-Order Planning for the Sussman Anomaly (continued)

Solution path in the plan space:

Start Node

Goal Node

finish

on(a,b),       on(b,c)

start

on(c,a), clear(floor), clear(c), on(a,floor), clear(b), on(b,floor)

finish

on(a,b),       on(b,c)

start
on(c,a), clear(floor), clear(c), on(a,floor), clear(b), on(b,floor)

not on(b,floor), not clear(c)
on(b,c), clear(floor)

move(b,floor,c)

clear(c), clear(b), on(b,floor)

finish

on(a,b),       on(b,c)

start

on(c,a), clear(floor), clear(c), on(a,floor), clear(b), on(b,floor)

not on(b,floor), not clear(c)
on(b,c), clear(floor)

move(b,floor,c)

clear(c), clear(b), on(b,floor)

finish

on(a,b),       on(b,c)

start

on(c,a), clear(floor), clear(c), on(a,floor), clear(b), on(b,floor)

not on(b,floor), not clear(c)
on(b,c), clear(floor)

move(b,floor,c)

clear(c), clear(b), on(b,floor)

finish

on(a,b),       on(b,c)

start

on(c,a), clear(floor), clear(c), on(a,floor), clear(b), on(b,floor)

not on(b,floor), not clear(c)
on(b,c), clear(floor)

move(b,floor,c)

clear(c), clear(b), on(b,floor)

finish

on(a,b),       on(b,c)

start

on(c,a), clear(floor), clear(c), on(a,floor), clear(b), on(b,floor)

not on(b,floor), not clear(c)
on(b,c), clear(floor)

move(b,floor,c)

clear(c), clear(b), on(b,floor)

move(a,floor,b)

clear(a), on(a,floor), clear(b)

not on(a,floor), not clear(b)
clear(floor), on(a,b)

finish

on(a,b),       on(b,c)

start

on(c,a), clear(floor), clear(c), on(a,floor), clear(b), on(b,floor)

not on(b,floor), not clear(c)
on(b,c), clear(floor)

move(b,floor,c)

clear(c), clear(b), on(b,floor)

move(a,floor,b)

clear(a), on(a,floor), clear(b)

not on(a,floor), not clear(b)
clear(floor), on(a,b)

finish

on(a,b),       on(b,c)

start

on(c,a), clear(floor), clear(c), on(a,floor), clear(b), on(b,floor)

not on(b,floor), not clear(c)
on(b,c), clear(floor)

move(b,floor,c)

clear(c), clear(b), on(b,floor)

move(a,floor,b)

clear(a), on(a,floor), clear(b)

not on(a,floor), not clear(b)
clear(floor), on(a,b)

finish

on(a,b),       on(b,c)

start

on(c,a), clear(floor), clear(c), on(a,floor), clear(b), on(b,floor)

not on(b,floor), not clear(c)
on(b,c), clear(floor)

move(b,floor,c)

clear(c), clear(b), on(b,floor)

move(a,floor,b)

clear(a), on(a,floor), clear(b)

not on(a,floor), not clear(b)
clear(floor), on(a,b)

move(c,a,floor)

on(c,a), clear(c), clear(floor)

not on(c,a), not clear(floor)
clear(a), on(c,floor), clear(floor)

finish

on(a,b),       on(b,c)

start

on(c,a), clear(floor), clear(c), on(a,floor), clear(b), on(b,floor)

not on(b,floor), not clear(c)
on(b,c), clear(floor)

move(b,floor,c)

clear(c), clear(b), on(b,floor)

move(a,floor,b)

clear(a), on(a,floor), clear(b)

not on(a,floor), not clear(b)
clear(floor), on(a,b)

move(c,a,floor)

on(c,a), clear(c), clear(floor)

not on(c,a), not clear(floor)
clear(a), on(c,floor), clear(floor)

finish

on(a,b),       on(b,c)

start

on(c,a), clear(floor), clear(c), on(a,floor), clear(b), on(b,floor)

not on(b,floor), not clear(c)
on(b,c), clear(floor)

move(b,floor,c)

clear(c), clear(b), on(b,floor)

move(a,floor,b)

clear(a), on(a,floor), clear(b)

not on(a,floor), not clear(b)
clear(floor), on(a,b)

move(c,a,floor)

on(c,a), clear(c), clear(floor)

not on(c,a), not clear(floor)
clear(a), on(c,floor), clear(floor)

finish

on(a,b),       on(b,c)

start

on(c,a), clear(floor), clear(c), on(a,floor), clear(b), on(b,floor)

not on(b,floor), not clear(c)
on(b,c), clear(floor)

move(b,floor,c)

clear(c), clear(b), on(b,floor)

move(a,floor,b)

clear(a), on(a,floor), clear(b)

not on(a,floor), not clear(b)
clear(floor), on(a,b)

move(c,a,floor)

on(c,a), clear(c), clear(floor)

not on(c,a), not clear(floor)
clear(a), on(c,floor), clear(floor)
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HTN Planning
Prerequisites

q Objective of HTN Planning is to accomplish given tasks.

Definition 16 (Task)

Let a STRIPS model S = (C,P,O) be given. A task t(p1, . . . , pn) is specified by

q a task name t that is either an operator name in O or new for S and

q a parameter list p1, . . . , pn consisting of constants in C or variables
(where n is the corresponding arity for operators in O).

t(p1, . . . , pn) is a primitive task if t an operator name in O. Otherwise, t(p1, . . . , pn) is
a complex task.

A task is ground if its parameter list does not contain a variable.

An action a accomplishes a task t in a state s if a = t and a is applicable in s.

Ü Only primitive ground tasks can be accomplished by actions.
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HTN Planning
Prerequisites (continued)

q In HTN Planning, accomplishing tasks is constrained.

Definition 17 (Task Network)

Let a STRIPS model S = (C,P,O) be given. A task network N is a pair
N = (TN , CN) where

q TN is a finite set of tasks and

q CN is a finite set of constraints of the form

t ≺ t′ with t, t′ ∈ TN ,
before(T ′N , l) with T ′N ⊆ TN and a literal l from S,
after (T ′N , l) with T ′N ⊆ TN and a literal l from S, or
between(T ′N , T

′′
N , l) with T ′N , T

′′
N ⊆ TN and a literal l from S.

A simple task network has only precedence constraints.

A task network is ground if all its tasks are ground. A task network is primitive if all
its tasks are primitive.

Ü Only primitive ground task networks can be accomplished by plans.
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Remarks:

q The intended meaning of the constraints is as follows:

– t ≺ t′:
Accomplishing t has to be finished before starting to accomplish t′.

– before(T ′, l):
In the state immediately before starting to accomplish T ′, l has to be valid.

– after(T ′, l):
In the state immediately after finishing to accomplish T ′, l has to be valid.

– between(T ′, T ′′, l):
In the state immediately after finishing to accomplish T ′ and just before starting to
accomplish T ′′, l has to be valid.
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HTN Planning
Prerequisites (continued)

q In HTN Planning, complex tasks can be decomposed.

Definition 18 (Method, HTN Model, HTN Planning Problem)

Let a STRIPS model S = (C,P,O) be given.

A method m(x1, . . . , xn) is a triple (tm, Tm, Cm) where

q t is a task,

q (Tm, Cm) is a task network, and

q x1, . . . , xn is the list of variables occurring in tm or (Tm, Cm).

A HTN model H = (C,P,O,M) is given by a STRIPS model S = (C,P,O) and a
finite set M of methods.

A HTN planning problem (H, sinit , Ngoal) consists of an HTN model H, an initial state
sinit and a task network Ngoal with task names from H.

Ü Methods can be used to decompose tasks in Ngoal into a network of primitive
tasks.
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HTN Planning
Prerequisites (continued)

Definition 19 (HTN Space)

Let a HTN model H = (C,P,O,M) and a HTN planning problem (H, sinit , Ngoal) be
given.

A method m = (tm, Tm, Cm) is applicable to a task t in a task network N = (TN , CN) if
there is a substitution σ such that σ(tm) = t. The successor task network
N ′ = (T ′N , C

′
N) is defined by T ′N = (TN \ {t}) ∪ σ(Tm) and C ′N computed from CN by

q replacing order constraints t′ ≺ t and t ≺ t′ by all corresponding order
constraints with t substituted by tasks from σ(Tm),

q replacing state constraints before(T ′, l),after (T ′, l), and between(T ′, T ′′, l) by
corresponding state constraints with T ′ substituted by T ′ \ {t}) ∪ σ(Tm) resp. T ′′

substituted by T ′′ \ {t}) ∪ σ(Tm).

The HTN space for (H, sinit , Ngoal) is the set of all task networks that can be
constructed by applying methods in M .

Ü In the HTN space we have to look for task networks that define solution plans.
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HTN Planning
Prerequisites (continued)

q In HTN Planning, a plan has to accomplish tasks taking into account the
constraints.

Definition 20

Let a HTN planning problem (H, sinit , Ngoal) be given and let Ngoal = (TN , CN) be a
primitive ground task network. Let (t1, . . . , tk) be an ordering of the tasks in TN that
is consistent with CN . So, p = (t1, . . . , tk) is a plan.

Plan p accomplishes the tasks in task network Ngoal if p is applicable in state sinit

and the constraints in CN are met, i.e. for T ′N , T
′′
N ⊆ TN and a literal l we have

before(T ′, l) l is valid directly before executing the first action in T ′N ,
after (T ′, l) l is valid directly after executing the last action in T ′N ,
between(T ′, T ′′, l) l is valid directly before executing the first action in T ′N and

l is valid directly after executing the last action in T ′N .

Ü For primitive ground task networks a total ordering and a constraint check is
needed.
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HTN Planning
Prerequisites (continued)

q In HTN Planning, non-primitive task networks have to be decomposed.

Definition 21 (Solution Plan)

Let a HTN model H = (C,P,O,M) and a HTN planning problem (H, sinit , Ngoal) be
given and let Ngoal = (TN , CN) be the task network.

If Ngoal is primitive and if there is a ground substitution σ and an ordering
p = (σ(t1), . . . , σ(tk)) of the tasks in σ(TN) such that p is consistent with σ(CN) and p
accomplishes the tasks in task network σ(Ngoal), then p is a solution plan for
(H, sinit , Ngoal).

If Ngoal is non-primitive and Ngoal can be decomposed by a finite number of method
applications from M into a primitive task network (T ′N , C

′
N) for which a solution plan

p exists, then p is a solution plan for (H, sinit , Ngoal).

Ü In HTN Planning we have to search the HTN space for task networks that have
solution plans.
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HTN Planning
Abstract HTN Planning

Starting from the task network Ngoal from the HTN planning problem, decompose
non-primitive tasks, instantiate and order the primitive tasks forming a plan, and
check the plan.

Nondeterministic algorithm:

1. Start with task network Ngoal from a HTN planning problem.

2. While the current task network N = (TN , CN) is not primitive do:

(a) Select a non-primitive task t.
(b) If no ground instance of a method can decompose this task, then return Failure.
(c) Choose a ground method instance mg.
(d) Decompose t using method mg.

3. If there in no ordering of the actions in the primitive task network N that is consistent with CN ,
then return Failure.

4. Choose such a total ordering as a plan p.

5. If p is inconsistent with the state constraints in CN , then return Failure.

6. Return the plan p.

Problem: Which decompositions are promising?
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Remarks:

q Task decomposition in HTN Planning can be cyclic: A task that was decomposed can reappear
in the decomposition.
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HTN Planning
Simplification of HTN Planning

q In HTN Planning, a plan has to accomplishing tasks taking into account the
constraints.

Definition 22 (Total-order STN Planning Problem)

Let a HTN planning problem (H, sinit , Ngoal) be given and let Ngoal = (TN , CN) be a
primitive ground task network.

Further let the task network Ngoal and the task networks (Tm, Cm) of the methods
m = (tm, Tm, Cm) in M bet totally ordered. Apart from ordering constraints, let Cm
contain only constraints before(Tm, l) with literals l.

Then, (H, sinit , Ngoal) is called a total-order STN planning problem.

Ü Total-order task networks can be specified as lists of tasks. So, a method in a
total-order STN planning problem can be described as

m = (tm,precond(m), (t(m,1), . . . , t(m,km)))
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Remarks:

q STN stands for Simple Task Networks.
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HTN Planning
Total-Order Forward Decomposition HTN Planning

Starting from the task network Ngoal from the total-order STN planning problem, the
first task if decomposed in case of a non-primitive task or applied to the current
state in case of a primitive task.

Nondeterministic algorithm:

1. Start with the list of tasks in network Ngoal from a total-order STN planning problem and an
empty plan p and the state sinit .

2. While the current list of tasks is not empty do:

(a) If t1 is a non-primitive task and if no ground instance of a method can decompose this task,
then return Failure.

(b) Otherwise, if t1 is a non-primitive task, choose a ground method instance mg and
decompose t1 using method mg.

(c) Otherwise, if t1 is a primitive task and if t1 is not applicable to the current state, then return
Failure.

(d) Otherwise, if t1 is a primitive task, append t1 to the plan p and let the successor state be the
current state.

3. Return the plan p.
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Remarks:

q For Abstract HTN Planning and Total-Order Forward Decomposition HTN Planning, we can
define also versions using lifting.

q In Total-Order Forward Decomposition HTN Planning a plan is constructed. Similarly, a partial
planning approach is possible when dealing with simple task networks for which only a partial
order of tasks is given.

q Examples of HTN planning planning systems:

– D. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila. SHOP: Simple Hierarchical Ordered Planner,
in: Proc. 16th Int. Joint Conf. on Artificial Intelligence (IJCAI 99), pp. 968-973

– D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman. SHOP2: An
HTN Planning System, in: J. Artif. Intell. Research 20, (2003), pp. 379-404

q Further reading:

– K. Erol, J. Hendler, D. S. Nau. Complexity Results for HTN Planning, in: Annals of
Mathematics and Artificial Intelligence 18 (1996), pp. 69-93
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HTN Planning
Total-Order Forward Decomposition vs. Abstract HTN Planning

q Total-Order Forward Decomposition can detect early that a plan will not be
applicable to the initial state.

q Both algorithms are sound.
By definition of solution plans, the plans returned solve the planning problem at
hand.

q Both algorithms are complete.
A sequence of task decompositions for a total-order STN planning problem can
be rearranged in such a way that always a first non-primitive task is
decomposed. The resulting task network is a plan that is not changed by that
rearrangement. Applicability of the plan is checked by the algorithm.

q There are undecidable problems that can be expressed as HTN planning
problems, even as STN planning problems (i.e. allowing task networks that are
not totally ordered). Therefore, the Plan Existence Problem for STN Planning
and HTN Planning is strictly semi-decidable.
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Remarks:

q Since undecidable problems can be encoded as HTN/STN planning problems, even sound and
complete HTN/STN planning algorithms will not terminate for all inputs.
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