
Chapter MK:VI

VI. Planning and Configuration

q Agent Systems
q Deductive Reasoning Agents
q Planning Language
q Planning Algorithms
q State-Space Planning
q Plan Space Planning
q HTN Planning
q Complexity of Planning Problems
q Extensions

MK:VI-1 Planning and Configuration © LETTMANN 2007-2021

Remarks:

q Helpful books on agent systems and planning:

– Malik Ghallab, Dana Nau, Paolo Traverso. Automated Planning: Theory and Practice.
Morgan Kaufmann, 2004.
(Lecture Slides)

– Malik Ghallab, Dana Nau, Paolo Traverso. Automated Planning and Acting. Cambridge
University Press, 2016.
(Lecture Slides)

– David Poole, Alam Mackworth, Randy Goebel. Computational Intelligence: A Logical
Approach. Oxford University Press, 1998.
(Lecture Slides)

– Stuart Russell, Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
2003.
(Lecture Slides)

– Nils Nilsson. Principles of Artificial Intelligence. Tioga Publishing, 1980
– Jacques Ferber. Multi-Agent Systems: An Introduction to Artificial Intelligence.

Addison-Wesley, 1999.
– Michael R. Genesereth, Nils J. Nilsson. Logical Foundations of Artificial Intelligence.

Margan Kaufmann, 1987.

MK:VI-2 Planning and Configuration © LETTMANN 2007-2021

http://www.cs.umd.edu/~nau/planning/slides/
http://www.cs.umd.edu/users/nau/apa/slides/
http://www.cs.ubc.ca/~poole/ci.html
https://people.eecs.berkeley.edu/~russell/slides/

Agent Systems
Example: Monkey-and-Banana-Problem

A monkey is in a room. Suspended from the ceiling is a bunch of
bananas, beyond the monkey’s reach. In the corner of the room is a
box. How can the monkey get the bananas?

The solution is of course that the monkey must push the box under the
bananas, then stand on the box and grasp the bananas.

[Wikipedia]

MK:VI-3 Planning and Configuration © LETTMANN 2007-2021

https://en.wikipedia.org/wiki/Monkey_and_banana_problem

Agent Systems
Example: Monkey-and-Banana-Problem

A monkey is in a room. Suspended from the ceiling is a bunch of
bananas, beyond the monkey’s reach. In the corner of the room is a
box. How can the monkey get the bananas?

The solution is of course that the monkey must push the box under the
bananas, then stand on the box and grasp the bananas.

[Wikipedia]

Ü What is the problem?

MK:VI-4 Planning and Configuration © LETTMANN 2007-2021

https://en.wikipedia.org/wiki/Monkey_and_banana_problem

Agent Systems
Intelligent Agents

An agent is anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through actuators.

A rational agent is one that does the right thing [. . .].

[Russell & Norvig: Artificial Intelligence 2nd ed., 2003]

PEAS characterization of agents:

q Performance Measures
What are the criteria for success and how are they measured?

q Environment
What are the circumstances, objects, or conditions by which an agent is
surrounded?

q Actuators
What are prerequisites and consequences of using actuators?

q Sensors
What sensors are available and what information do they provide?

MK:VI-5 Planning and Configuration © LETTMANN 2007-2021

Remarks:

q In [Russell & Norvig: Artificial Intelligence 2nd ed., 2003] also a more detailed definition of rational
behavior is given:

For each possible percept sequence, a rational agent should select an action that is
expected to maximize its performance measure, given the evidence provided by the
percept sequence and whatever built in knowledge the agent has.

q In [Russell & Norvig: Artificial Intelligence, 1995] the PAGE characterization of agents is given that
differs from the PEAS description in that agents have goals to achieve:

– Percepts
What sensors are available and what information do they provide?

– Actions
What are prerequisites and consequences of using actuators?

– Goals
What does an agent try to achieve?

– Environment
What are the circumstances, objects, or conditions by which an agent is surrounded?

In the second edition of their book Russell and Norvig take a more pragmatic view. Success
is given by a performance measure and an agent simply tries to maximize its performance.
The problem is now to describe something like a "better world" by a performance measure.

MK:VI-6 Planning and Configuration © LETTMANN 2007-2021

Agent Systems
Modeling in Agent Design: Classical View [Russell & Norvig]

Environment
External
Events

Agent
ManipulationActuators

Observation
Sensors

Knowledge
Base

System Model
(Agent View)

use

manage

Controller

Action

Perception

q The agent can be part of the environment.
(Its position, pose, . . . are part of the "state" of the environment.)

q The "inside" of an agent (knowledge or intentions) are NOT part of the environment.

MK:VI-7 Planning and Configuration © LETTMANN 2007-2021

Agent Systems
Modeling in Agent Design: Model Levels

Für Pfeilspitzen als CS2 speichern.
In CS2 transformieren: Verbiegen 30
dann transformieren Skalieren H 100, V 70
Schließlich auf 85% skalieren.

Environment External
Events

Agent ManipulationActuators

ObservationSensors

System
Level

System Level: What is the interaction of agent and environment in reality from the
observer’s point of view?
MK:VI-8 Planning and Configuration © LETTMANN 2007-2021

Agent Systems
Modeling in Agent Design: Model Levels

Für Pfeilspitzen als CS2 speichern.
In CS2 transformieren: Verbiegen 30
dann transformieren Skalieren H 100, V 70
Schließlich auf 85% skalieren.

Environment External
Events

Agent ManipulationActuators

ObservationSensors

System
Level

State External
Events

Agent ActionActuators

PerceptionSensors

System
Model

System Model: How is the interaction of agent and environment in principle from
the observer’s point of view?
MK:VI-9 Planning and Configuration © LETTMANN 2007-2021

Agent Systems
Modeling in Agent Design: Model Levels

Für Pfeilspitzen als CS2 speichern.
In CS2 transformieren: Verbiegen 30
dann transformieren Skalieren H 100, V 70
Schließlich auf 85% skalieren.

Environment External
Events

Agent ManipulationActuators

ObservationSensors

System
Level

State External
Events

Agent ActionActuators

PerceptionSensors

System
Model

Agent

Controller

Action

Perception

Knowledge
Base

System Model
(Agent View)

use

manageAgent
Model

Agent Model: What is the interaction between agent and environment in principle
from the agent’s point of view?
MK:VI-10 Planning and Configuration © LETTMANN 2007-2021

Agent Systems
Agents as Part of the System Model: Observer’s View

Definition 1 (State Transition System with Events STS-E)

A state transition system with events S = (S,A,E, T) consists of

q S = {s, s′, ...} countable set of states (of the environment),

q A = {a, a′, ...} countable set of actions of the agent.

q E = {e, e′, ...} countable set of external events.

q T ⊆ (S × A× E)× S defines possible transitions of the system.
(s, a, e, s′) ∈ T denotes that a is applicable in state s, e is an external event
that can happen in s, and s′ is a possible successor state.

Environment Model S = (S,A,E, T)

Agent Model A = (S, A, π)

q π : S → A denotes the policy of an agent.

MK:VI-11 Planning and Configuration © LETTMANN 2007-2021

Remarks:

q S may contain a specific initial state s0 and S may contain a set of specific final states F .

q The above model of an environment is a gross simplification of stochastic processes. In
general, applicability of an action and its successor state may depend on previous states and
actions, i.e. the Markov property does not hold in such systems. An extension to the above
model (assuming E = ∅) is to consider runs r = (s0, a1, s1, a2, s2, a3, s3 . . . , sk−1, ak, sk) that are
finite alternating sequences of states and actions. Let R be the set of such sequences. Then
T ⊆ R× A× S defines possible transitions of the system. (r, a, s′) ∈ T denotes that a is
applicable in the final state reached by run r and s′ is a successor state. In such a case, the
agent has a policy π : R→ A.

q Actions don’t take time and result in an instantaneous state transition.

q Also, the above model of an environment includes only a simple representation of external
events. External events are only considered together with actions of the agent. An
environment without external events is modeled by a state transition system.

q An embodied agent will be part of the environment, it has a position and a pose. The mental
state of an agent, however, is not part of the environmental state. It is assumed to be
non-observable.

q Performance measures can be based on runs of an agent.

MK:VI-12 Planning and Configuration © LETTMANN 2007-2021

Remarks: (continued)

q The simple formal model suggests that we want to consider only one simple form of
environments, namely environments that form a state transition system with events. A
different perspective is more helpful:
An agent uses his sensors to detect his environment. The sensors are inaccurate compared
to the real environment, so that the actual state cannot be completely observed by the agent.
The coarsened view is further simplified within the agent to make it more manageable. Within
the agent, one works with an abstraction of the environment in the form of a state transition
system.
The simple formal model describes the agent-internal conception of the functioning of the
environment. The planning task is formulated in terms of the formal model that an agent has
of his environment. It can be seen as an agent internal translation of a planning task placed
on the real system of agent and environment.

MK:VI-13 Planning and Configuration © LETTMANN 2007-2021

Agent Systems
Agent Capabilities: Designer’s View

q Agents have and/or build up knowledge about the environment.
(Learning, Exploration/Exploitation, ...)
Simple case: S = (S,A,E, T) is known.

q Agents have additional knowledge (objects, relations, methods, causality,...).
(Background knowledge, e.g., "carrying objects changes their positions",
history of previous states actions, and events,...)
Simple case: Apart from S nothing is known.

q Agents perform the following steps in a loop:

1. Update the current state of the environment based on sensor readings
and previous knowledge.

2. Determine some promising action to perform.

3. Execute that action and update knowledge.

Simple case: s ∈ S can be observed directly.

Ü Logical agents use logical languages to represent knowledge.

MK:VI-14 Planning and Configuration © LETTMANN 2007-2021

Agent Systems
Agent Capabilities: Designer’s View (continued)

q Agents implement rational behavior by looking ahead: planning.

Automated planning and scheduling, sometimes denoted as simply AI
Planning, is a branch of artificial intelligence that concerns the
realization of strategies or action sequences, typically for execution by
intelligent agents, autonomous robots and unmanned vehicles. [...]

In known environments with available models, planning can be done
offline. Solutions can be found and evaluated prior to execution. In
dynamically unknown environments, the strategy often needs to be
revised online. Models and policies must be adapted.

[Wikipedia, 2020]

Ü Deductive reasoning agents use logical reasoning to infer a promising action.

MK:VI-15 Planning and Configuration © LETTMANN 2007-2021

https://en.wikipedia.org/wiki/Automated_planning_and_scheduling

Agent Systems
Example: Loading Dock [Ghallab, Nau, Traverso]

Ü How to load the truck?

MK:VI-16 Planning and Configuration © LETTMANN 2007-2021

Agent Systems
Example: Loading Dock [Ghallab, Nau, Traverso]

Ü How to load the truck?

Abstraction from concrete problems:

q simplification of possible locations for cargo, truck, crane,. . . into
countable/finite number of configurations,

q simplification of the causes of state changes into finite sets of actions and
events.

Ü Problem solving by searching for a suitable sequence of actions.

(A more complex problem of this type is the Container Pre-Marshalling Problem.)

MK:VI-17 Planning and Configuration © LETTMANN 2007-2021

https://doi.org/10.1016/j.ejor.2017.05.046

Agent Systems
Example: Loading Dock (continued)

Formal model of the environment S

q states S = {s0, . . . , s5}
q actions A = {move1,move2,put , take, load ,unload}
q events E = ∅
q state transitions

location 2location 1

s0

location 2location 1

s2

location 2location 1

s5

location 2location 1

s4

location 2location 1

s3

location 2location 1

s1

take put take put move1 move2

move2

move1

move2

move1

unload

load

MK:VI-18 Planning and Configuration © LETTMANN 2007-2021

Agent Systems
Agents as Part of the System Model: Observer’s View

Definition 2 (Planning Problem, Plan)

Let S = (S,A,E, T) be the environment model for an agent.

q A planning problem (s0, F) is defined by some initial state s0 ∈ S and some
set of final states F ⊆ S

q A plan (a1, . . . , ak) is a finite sequence of actions in A.

q A plan (a1, . . . , ak) is a solution for the planning problem (s0, F) if there are
states s1, . . . , sk ∈ S and events e1, . . . , ek ∈ E such that (si−1, ai, ei, si) ∈ T and
sk ∈ F .

Ü According to the above definition a plan is a "best case" solution.
q If E = ∅ and if T is deterministic, it is enough to have a plan.
q If possible events are known (e.g. two player game), a strategy is needed.
q If possible events are not known, a policy is needed.

MK:VI-19 Planning and Configuration © LETTMANN 2007-2021

Remarks:

q More generally, the objective in planning task could be

– to reach a specific goal state,
– to reach a set of goal states in a fixed order one after the other,
– to perform a list of tasks,
– to satisfy some condition over the sequence of states generated by a plan,
– to maximize some utility function,
– . . .

q The task is often limited for complexity studies:
Is there a plan (of length k) with the required properties?

MK:VI-20 Planning and Configuration © LETTMANN 2007-2021

Agent Systems
Example: Loading Dock (continued)

Environment model STS-E S = (S,A,E, T)

q planning problem
sfinalsinit

location 2location 1

s0

location 2location 1

s2

location 2location 1

s5

location 2location 1

s4

location 2location 1

s3

location 2location 1

s1

take put take put move1 move2

move2

move1

move2

move1

unload

load

MK:VI-21 Planning and Configuration © LETTMANN 2007-2021

Agent Systems
Example: Loading Dock (continued)

Environment model STS-E S = (S,A,E, T)

q planning problem
sfinalsinit

location 2location 1

s0

location 2location 1

s2

location 2location 1

s5

location 2location 1

s4

location 2location 1

s3

location 2location 1

s1

take put take put move1 move2

move2

move1

move2

move1

unload

load

q plan p = (take,move1, load ,move2)

q policy π = {(s0, take), (s1,move1), (s3, load), (s4,move2)}

Q. What is the difference between plans and policies?
MK:VI-22 Planning and Configuration © LETTMANN 2007-2021

Agent Systems
Possible Restrictions of Planning Problems

A0 Finite System
The set of states S is finite.

A1 Full Observability
The state of the system can be fully observed. There is no uncertainty about the current
state.

A2 Deterministic System
For each action-event pair there is at most one successor state in each state:
T : S × A× E → S, T is a (partial) function.

A3 Static System
There are no exogenous events, state changes only occur due to agent’s actions: E = ∅.

A4 Restricted Goals
A set of possible goal states is predefined.

A5 Sequential Plans
Plans are linearly ordered sequences of actions.

A6 Implicit Time
Actions and events have no duration. State transitions are instantaneous.

A7 Offline Planning
The planner does not take into account any state changes during the planning process that
may occur because of system dynamics.

Ü Given restrictions A0-A7: Classical Planning
MK:VI-23 Planning and Configuration © LETTMANN 2007-2021

Remarks:

q If according to A0 the set of states is finite, we can also assume that the set of actions and
the set of external events are finite. In case of infinite sets of events or actions we can
consider equivalence classes with respect to the transition relation instead. These number of
equivalence classes is finite for a finite set of states.

MK:VI-24 Planning and Configuration © LETTMANN 2007-2021

Agent Systems
Possible Restrictions of Planning Problems

A0 Finite System
The set of states S is finite.

A1 Full Observability
The state of the system can be fully observed. There is no uncertainty about the current
state.

A2 Deterministic System
For each action-event pair there is at most one successor state in each state:
T : S × A× E → S, T is a (partial) function.

A3 Static System
There are no exogenous events, state changes only occur due to agent’s actions: E = ∅.

A4 Restricted Goals
A set of possible goal states is predefined.

A5 Sequential Plans
Plans are linearly ordered sequences of actions.

A6 Implicit Time
Actions and events have no duration. State transitions are instantaneous.

A7 Offline Planning
The planner does not take into account any state changes during the planning process that
may occur because of system dynamics.

Ü Given restrictions A1-A7: Planning can be done by state-space search.
MK:VI-25 Planning and Configuration © LETTMANN 2007-2021

Deductive Reasoning Agents
Tasks in Planning

q Description of the Initial Situation
What are the characteristics of the initial state, both positive (valid) and
negative (non-valid)?

q Description of Actions
What are the prerequisites for the execution of an action, what causes the
execution?

q Projection Problem
What are the characteristics of the achieved state for an action sequence with
a given initial state?

q Planning Problem
What is a suitable sequence of actions to achieve certain characteristics in a
target state with a given initial state?

Tell it what it needs to know. Then it can ask itself what to do.
[Russell/Norvig]

MK:VI-26 Planning and Configuration © LETTMANN 2007-2021

Deductive Reasoning Agents
Agent Capabilities: Designers View (continued)

Sources of Intelligent Behavior: Concurrent AI Agent Paradigms

q The Society of the Mind (Marvin Minsky, started in early 1970s)

"Competence emerges from a large number of relatively simple agents
integrated by a clever architecture."

q Common Sense Knowledge (Douglas Lenat, started in 1980)

"Competence arises from a large body of common sense knowledge."

q Physical Grounding Hypothesis (Rodney Brooks, 1990)

"To build an intelligent system it is necessary to base its representation on the
physical world. The real world is its own best model provided a robot can
sense it appropriately and often enough."

MK:VI-27 Planning and Configuration © LETTMANN 2007-2021

Remarks:

q Promoting intelligent behavior yields an inherent problem stated by

Cole’s Axiom: The sum of the intelligence on the planet is a constant; the population
is growing.

MK:VI-28 Planning and Configuration © LETTMANN 2007-2021

Deductive Reasoning Agents
Example: Loading Dock (continued)

States S = {s0, . . . , s5}

sfinalsinit

location 2location 1

s0

location 2location 1

s2

location 2location 1

s5

location 2location 1

s4

location 2location 1

s3

location 2location 1

s1

take put take put move1 move2

move2

move1

move2

move1

unload

load

Q. How do you describe large state spaces?

MK:VI-29 Planning and Configuration © LETTMANN 2007-2021

Deductive Reasoning Agents
Describing States

Approach:

q description by specifying properties.

Objective:

q unique description for each state,
q simple semantics,
q independence from the specific application.

MK:VI-30 Planning and Configuration © LETTMANN 2007-2021

Deductive Reasoning Agents
Describing States

Approach:

q description by specifying properties.

Objective:

q unique description for each state,
q simple semantics,
q independence from the specific application.

Ü Using logic-based descriptions:

– first order logic in(container1, stack1)

– propositional logic container1_in_stack1

MK:VI-31 Planning and Configuration © LETTMANN 2007-2021

Deductive Reasoning Agents
Describing States

Approach:

q description by specifying properties.

Objective:

q unique description for each state,
q simple semantics,
q independence from the specific application.

Ü Using logic-based descriptions:

– first order logic in(container1, stack1)

– propositional logic container1_in_stack1

Q. How to describe large state spaces?

MK:VI-32 Planning and Configuration © LETTMANN 2007-2021

Deductive Reasoning Agents
Describing State Spaces

Approach:

q explicit specification of initial states,
q specification of operators as generic state transitions.

Objective:

q generic specification as operator, actions as instantiations,
q specification of conditions for application of actions,
q specification of state changes by properties changed.

Ü If required, parts of the state space can be generated by using operators,
starting from the initial state.

MK:VI-33 Planning and Configuration © LETTMANN 2007-2021

Deductive Reasoning Agents
Example: Monkey-and-Banana-Problem (continued)

A monkey is in a room. Suspended from the ceiling is a bunch of
bananas, beyond the monkey’s reach. In the corner of the room is a
box. How can the monkey get the bananas?

The solution is of course that the monkey must push the box under the
bananas, then stand on the box and grasp the bananas.

[Wikipedia]

Ü How to find a plan for grasping the bananas?

MK:VI-34 Planning and Configuration © LETTMANN 2007-2021

https://en.wikipedia.org/wiki/Monkey_and_banana_problem

Deductive Reasoning Agents
Example: Monkey-and-Banana-Problem (continued)

A monkey is in a room. Suspended from the ceiling is a bunch of
bananas, beyond the monkey’s reach. In the corner of the room is a
box. How can the monkey get the bananas?

The solution is of course that the monkey must push the box under the
bananas, then stand on the box and grasp the bananas.

[Wikipedia]

First solution: Prolog (First Order Logic with Resolution [SWI-Prolog Online])

singleMove(state(X, onbox , X,X,hasnot),grasp, state(X, onbox , X,X,has)).
singleMove(state(X, onfloor , X, Y, Z), climb, state(X, onbox , X, Y, Z)).
singleMove(state(X1,onfloor , X1, Y, Z),push(X1, X2), state(X2,onfloor , X2, Y, Z)).
singleMove(state(X1,onfloor , Y, Z,H),walk(X1, X2), state(X2,onfloor , Y, Z,H)).

moves(state(_,_,_,_,has), []).
moves(S1, [A|AL]) : – singleMove(S1, A, S2),moves(S2, AL).

solve(AL) : – moves(state(atdoor ,onfloor ,atwindow ,middle,hasnot), AL).

? – solve(ATALL).

MK:VI-35 Planning and Configuration © LETTMANN 2007-2021

https://en.wikipedia.org/wiki/Monkey_and_banana_problem
https://swish.swi-prolog.org/

Deductive Reasoning Agents
Example: Monkey-and-Banana-Problem (continued)

A monkey is in a room. Suspended from the ceiling is a bunch of
bananas, beyond the monkey’s reach. In the corner of the room is a
box. How can the monkey get the bananas?

The solution is of course that the monkey must push the box under the
bananas, then stand on the box and grasp the bananas.

[Wikipedia]

Second solution:

state(a, b, c, d).
state(X2, Y, Z,walk(X1, X2, S)) : – state(X1, Y, Z, S).
state(X2, Y,X2,push(X1, X2, S)) : – state(X1, Y,X1, S).
state(X, Y,X, climb(S)) : – state(X, Y,X, S).

solve(grasp(climb(S))) : – state(X,X,X, climb(S)).

? – solve(ATALL).

MK:VI-36 Planning and Configuration © LETTMANN 2007-2021

https://en.wikipedia.org/wiki/Monkey_and_banana_problem

Deductive Reasoning Agents
Modeling Knowledge in Logic

q Modeling of environmental states

term-based vs. fact-based
singleMove(state(X, onbox , X,X,hasnot),grasp, state(X, onbox , X,X,has)).
state(X2, Y, Z,walk(X1, X2, S)) : – state(X1, Y, Z, S).

q Modeling of state transitions for action sequences

implicit dependencies vs. explicit dependencies
singleMove(state(X, onbox , X,X,hasnot),grasp, state(X, onbox , X,X,has)).
state(X2, Y, Z,walk(X1, X2, S)) : – state(X1, Y, Z, S).

q Model accuracy

explicit representation of object relations vs. implicit representation
singleMove(state(X, onbox , X,X,hasnot),grasp, state(X, onbox , X,X,has)).
state(X,Y,X, climb(S)) : – state(X,Y,X, S).

q Importance of the clause order in Prolog programs

Program version 1 does not work correctly if clause 4 is on top.
There is no correct clause ordering for program version 2.

MK:VI-37 Planning and Configuration © LETTMANN 2007-2021

Deductive Reasoning Agents
Example: Monkey-and-Banana-Problem (continued)

Extended second solution:

singleMove(state(X1,onfloor , Y, Z,H),walk(X1, X2), state(X2,onfloor , Y, Z,H)).
singleMove(state(X1,onfloor , X1, Y, Z),push(X1, X2), state(X2,onfloor , X2, Y, Z)).
singleMove(state(X, onfloor , X, Y, Z), climb, state(X, onbox , X, Y, Z)).
singleMove(state(X, onbox , X,X,hasnot),grasp, state(X, onbox , X,X,has)).

moves(state(_,_,_,_,has), [], 0).
moves(S1, [A|AL], N) : – N1 is N − 1, N1 >= 0,

singleMove(S1, A, S2),moves(S2, AL,N1).

planlength(0).
planlength(N) : – planlength(N1), N is N1 + 1.

solve(AL) : – planlength(N),
moves(state(atdoor ,onfloor ,atwindow ,middle,hasnot), AL,N).

? – solve(ATALL).

Program implements a DFS-search with iterative deepening.

MK:VI-38 Planning and Configuration © LETTMANN 2007-2021

Remarks:

q Version 1 explicitly models the monkey’s position in relation to the box (onfloor , onbox) and
the monkey’s position in relation to the banana (has, hasnot).

q Version 2 models the states less in detail, but depending on the sequence of actions
performed.

q Version 1 works correctly only with the specified ordering of clauses. Changing the order of
clauses 3 and 4 leads to an infinite loop.

q Version 2 does not work correctly in any order of the clauses, there is always an infinite loop.

q Version 1 searches for a sequence of actions starting with the initial situation in clause 5.

q Version 2 searches for a sequence of actions starting with the target in clause 1.

q Version 3 extends version 1: A depth limit is integrated into the depth search of Prolog, the
depth is increased stepwise by clauses 6 and 7.

q Version 3 represents states as terms, because with a solution like in version 2 the depth
bound would have to be integrated into the state.

MK:VI-39 Planning and Configuration © LETTMANN 2007-2021

Deductive Reasoning Agents
Example: Theorem Proving

Implicational calculus

Axioms Modus Ponens
α→ (β → α) α

(α→ (β → γ))→ ((α→ β)→ (α→ γ)) α→ β

(¬α→ ¬β)→ (β → α) β

Q. Is it possible to derive α→ ¬¬α from the axioms using modus ponens?

Modeling

∀x∀y True (i(x, i(y, x)))

∀x∀y∀z True (i(i(x, i(y, z)), i(i(x, y), i(x, z))))

∀x∀y True (i(i(n(x), n(y)), i(y, x)))

 Initial state.

∀x∀y (True (i(x, y)) ∧ True (x)→ True (y)) Action schema.

Find a plan to reach a state with ∀xTrue (i(x, n(n(x)))).

MK:VI-40 Planning and Configuration © LETTMANN 2007-2021

Planning Language
STRIPS Planning Language

(STanford Research Institute Problem Solver)

Language for describing planning problems

q developed by Fikes and Nilsson in 1971,

q applied in Shakey,
(Mobile robot of the Stanford Research Institute (SRI)
integrating perception, planning and execution),

q emerged form an overlap of

– state space search,
– theorem proving, and
– control theory.

q Planning using propositional STRIPS models is PSPACE-complete.
[Bylander 1991]

MK:VI-41 Planning and Configuration © LETTMANN 2007-2021

http://www.computerhistory.org/revolution/artificial-intelligence-robotics/13/289

Remarks:

q STRIPS is still part of the langugage PDDL (Planning Domain Description Language) which
is used in the International Planning Competition (IPC) for the specification of planning
problems.

MK:VI-42 Planning and Configuration © LETTMANN 2007-2021

http://icaps-conference.org/index.php/Main/Competitions

Planning Language
STRIPS Language (restricted version)

q The STRIPS language is based on the function-free first-order logic (with
equality and order-sorted). STRIPS specifications contain

– a finite set of constant symbols denoting objects in the domain,
– a finite set of predicate symbols denoting properties in the domain,
– no function symbols.

Ü Domain Closure Assumption (DCA)
All objects in the domain are denoted by constants.

Ü Unique Name Assumption (UNA)
Different constants denote different objects.

q In STRIPS a state is specified by a finite set (i.e. a conjunction) of
variable-free atomic formulas (i.e. positive literals).

Ü Closed World Assumption (CWA)
All atomic formulas of a state are assumed to be true, all other
variable-free atomic formulas are assumed to be false.

MK:VI-43 Planning and Configuration © LETTMANN 2007-2021

Remarks:

q A STRIPS specification is finite.

q A STRIPS specification contains only constants and variables as terms.

q Since state descriptions contain only variable-free atomic formulas and the number of
constants and the number of predicates are finite, only a finite number of states can be
distinguished.

q A STRIPS state is based on facts (i.e. atomic formulas). More complex formulas restrict a
domains in a more intricate way. E.g., by using implications it can be expressed that each
state complies with certain rules. On the basis of facts, we can only describe special cases of
such situations.

MK:VI-44 Planning and Configuration © LETTMANN 2007-2021

Planning Language
Example: Loading Dock (continued)

q Constants, e.g.

– truck1 denoting vehicles,
– location1 and location2 denoting possible vehicle positions,
– c1 denoting container,
– stack1 denoting possible container storage positions,
– crane1 denoting cranes.

q Predicates, e.g.

– at(x, y) denoting "vehicle x is at position y",
– empty(x) denoting "crane x is unused",
– unloaded(x) denoting "vehicle x is unloaded",
– top(x, y) denoting "container x is on top of stack y",
– in(x, y) denoting "container x is on stack y".

q States, e.g.
{ at(truck1, location2),unloaded(truck1),

in(c1, stack1), top(c1, stack1),empty(crane1) }

location 2location 1

s0

MK:VI-45 Planning and Configuration © LETTMANN 2007-2021

Planning Language
STRIPS Language (restricted version) (continued)

q Operator are denoted by op(x1, . . . , xn) with unique names op and the list of
variables x1, . . . , xn that occur in the specification. Preconditions and effects
are specified by finite sets (i.e. conjunctions) of literals (negated or
non-negated atomic formulas).

q Actions are applications of operators: variables are substituted by constants.

Definition 3 (STRIPS Model, STRIPS State)

A STRIPS model S = (C,P,O) is given by a finite set C of constants, a finite set P
of predicate symbols with some arity, and a finite set O of operator descriptions of
the following form and using only constants in C, predicates in P , and variables.

operator : operator_name(x1, . . . , xn)
precond : finite list of literals describing preconditions,
effects: finite list of literals describing effects.

A state in a STRIPS model is described by a finite set variable-free positive literals
assuming DCA, UNA, and CWA.
An action is a ground instance of an operator (i.e. not containing variables).

MK:VI-46 Planning and Configuration © LETTMANN 2007-2021

Remarks:

q Operator names should be different from names in C and P and from variable names.

q In the effects effects of operators, variables can occur that do not occur in the preconditions
precond . Since actions are ground instances of operators, these variables are also
instantiated.
When searching for the actions that are applicable in a state, focus is on the precondition part
precond of the operators. Variables that occur only in the effects part could then be
understood as universally quantified. One could think that, therefore, all possible instances of
the corresponding literals are to be be removed or added. This is NOT permitted.

q The precondition precond of an operator should not contain an atomic formula negated and
non-negated at the same time, because such a precondition cannot be fulfilled by any state
description. In principle, this requirement also applies to actions. Ground instances of
operators should not cause complementary literals in actions. However, the second
requirement is not always met in favour of simpler operator descriptions.

q In the effects effects of a ground instance of an operators, no atomic formula should occur
negated and non-negated at the same time. A procedural question arises for an action that
contains literals in both polarities in the effects. Are the parts of the state that are no longer
valid in the subsequent state first removed and then the descriptions of the new positive facts
resulting from the action are added, or vice versa?

MK:VI-47 Planning and Configuration © LETTMANN 2007-2021

Planning Language
Example: Loading Dock (continued)

q Operator (simple version)

operator: move(t, l1, l2)
;; truck t moves from location l1 to l2
precond : at(t, l1)
effects: at(t, l2),¬at(t, l1)

q Operator (more complex version)

operator : move(t, l1, l2)
;; truck t moves from location l1 to l2
precond : at(t, l1),adjacent(l1, l2),¬occupied(l2)
effects: at(t, l2),¬at(t, l1),occupied(l2),¬occupied(l1)

location 2location 1

s0

Q. Which instances of move(t, l1, l2) are applicable?
MK:VI-48 Planning and Configuration © LETTMANN 2007-2021

Planning Language
STRIPS Language (restricted version) (continued)

STRIPS Assumption (avoiding the Frame Problem):
Only those parts of a state description that are explicitly mentioned in the
description of an action (precond resp. effects part) are affected by the execution of
the action.

Definition 4 (STRIPS Action Application)

Let a STRIPS model S = (C,P,O) be given and let s be a state described in S.

An action a that is a ground instance of an operator o ∈ O is applicable in s iff

q all non-negated literals in precond(a) are contained in s and
q no literal that occurs negated in precond(a) is contained in s.

A state s′ described in S is successor state of s by an applicable action a iff

s′ = (s \ {l positive literal |¬l ∈ effects(a)}) ∪ {l positive literal |l ∈ effects(a)})

MK:VI-49 Planning and Configuration © LETTMANN 2007-2021

Remarks:

q Successor states for an applicable action are computed from the current state and the action
description:

– first step: literals that occur negated in the effects part effects are deleted from the state
description,

– second step: literals that occur non-negated in the effects part effects are added to the
state description.

q For an operator op(x1, . . . , xn) and an action op(c1, . . . , cn) denote by

– precond+(op(c1, . . . , cn)) the set of atomic formulas that occur in the preconditions of
op(c1, . . . , cn) as non-negated literals,

– precond−(op(c1, . . . , cn)) the set of atomic formulas that occur in the preconditions in
negated literals,

– effects+(op(c1, . . . , cn)) the set of atomic formulas that occur in the effects of
op(c1, . . . , cn) as non-negated literals, and

– effects−(op(c1, . . . , cn)) the set of atomic formulas that occur in the effects in negated
literals.

Then, an action op(c1, . . . , cn) is applicable in state s (described by a set of ground atomic
formulas) if and only if

precond+(op(c1, . . . , cn)) ⊆ s and precond−(op(c1, . . . , cn)) ∩ s = ∅

The successor state s′ is described by

s′ = (s \ effects−(op(c1, . . . , cn))) ∪ effects+(op(c1, . . . , cn))

MK:VI-50 Planning and Configuration © LETTMANN 2007-2021

Planning Language
Example: Loading Dock (continued)

q State
{at(truck1, location2),unloaded(truck1),
in(c1, stack1), top(c1, stack1),empty(crane1)}

q Operator

operator: move(t, l1, l2)
;; truck t moves from location l1 to l2
precond : at(t, l1)
effects: at(t, l2),¬at(t, l1)

q Action defined by ground substitution [t/truck1, l2/location1, l1/location2]

action: move(truck1, location2, location1)
precond : at(truck1, location2)
effects: at(truck1, location1),¬at(truck1, location2)

q Successor state
{ at(truck1, location1),unloaded(truck1),

in(c1, stack1), top(c1, stack1),empty(crane1) }

location 2location 1

s0

location 2location 1

s2

MK:VI-51 Planning and Configuration © LETTMANN 2007-2021

Planning Language
STRIPS Language (restricted version) (continued)

Definition 5 (STRIPS Goal, STRIPS Plan)

Let a STRIPS model S = (C,P,O) be given.

A STRIPS goal is described by a finite set (i.e. conjunction) of variable-free literals.

A goal is satisfied (or achieved) in a state if all non-negated literals of the goal
description are contained in the state description and no literal occurring negated in
the goal description is contained in the state description.

A state satisfying the goal is a goal state. A plan is a sequence of actions.

q A goal may contain negated literals. In contrast to the initial state a goal is an incompletely
specified state.

q A goal is satisfied (or achieved) in a state if the state "contains" the goal. (This subset relation
has to realize CWA: literals occurring non-negated in the goal are contained in the literal set
specifying the state, no literal occurring negated in the goal is contained in the state.)

q A plan should be applicable in a given state. A successor state of a plan can be defined
inductively.

Ü We are interested in plans leading from an initial state to a goal state.
MK:VI-52 Planning and Configuration © LETTMANN 2007-2021

Planning Language
Example: Loading Dock (continued)

sfinalsinit

location 2location 1

s0

location 2location 1

s2

location 2location 1

s5

location 2location 1

s4

location 2location 1

s3

location 2location 1

s1

take put take put move1 move2

move2

move1

move2

move1

unload

load

Plan:

1. move(truck1, location2, location1),
2. take(crane1, c1,ground , stack1),
3. load(crane1, c1, truck1),
4. move(truck1, location1, location2)

MK:VI-53 Planning and Configuration © LETTMANN 2007-2021

Planning Language
Example: Blocks World [Nilsson]

Compact Model

q Constants: a, b, c, d, floor
q Predicates: on(x, y), clear(x)

q Operator:
operator : move(x, y, z)

precond : on(x, y), clear(x), clear(z)
effects : ¬on(x, y),¬clear(z),on(x, z), clear(y), clear(floor)

a b

c

d
�

a b

cd

Floor

Blocks

Gripper

q Initial state: {on(d, a),on(c, d),on(a, floor),on(b, floor), clear(b), clear(c), clear(floor)}
q Goal: {on(a, d),on(d, floor),on(b, c),on(c, floor)}

q Necessary actions: move(a, floor , d),move(b, floor , c),move(c, d, floor),move(d, a, floor)

q Plan: (move(c, d, floor),move(d, a, floor),move(a, floor , d),move(b, floor , c))

MK:VI-54 Planning and Configuration © LETTMANN 2007-2021

Remarks:

q Obviously, not every ground instance of the operator is a meaningful resp. legal action in this
modeling:

– Substitution [x/a, y/floor , z/floor] leads to conflicts in the effects part, since atom
clear(floor) occurs negated as well as non-negated.
The order in which the next state is created resolves the conflict:

"First remove negated atoms in the effects part from the state description,
then add the non-negated atoms to the state description."

– Substitution [x/floor , y/a, z/b] results in an action that is not applicable in any "real" state,
i.e. in a state that represents a real world situation.
Assuming a "good" modeling of situations in the environment as states and adequate
modeling of state transitions, no action will be applicable that is not meaningful.
Alternatively, sort predicates can be used, e.g. block(x) in the precond part.

q For the sake of brevity of the description, the property clear(floor) is modeled in such a way
that it can be consumed. Therefore, this atom has simply been added to the effects part of
the operator, but this is not a new property of the successor state in every instantiation.

MK:VI-55 Planning and Configuration © LETTMANN 2007-2021

Planning Language
Example: Blocks World [Nilsson] (continued)

q Constants: a, b, c
q Predicates: on(x, y),ontable(x), clear(x)

holding(x),handempty()
q Operators:

operator : pickup(x)
precond : ontable(x), clear(x),handempty()
effects : holding(x),¬ontable(x),¬clear(x),¬handempty()

operator : putdown(x)
precond : holding(x)
effects : ontable(x), clear(x),handempty(),¬holding(x)

operator : stack(x, y)
precond : holding(x), clear(y)
effects : on(x, y), clear(x),¬clear(y),¬holding(x),handempty()

operator : unstack(x, y)
precond : on(x, y), clear(x),handempty()
effects : holding(x), clear(y),¬on(x, y),¬clear(x),¬handempty()

q Initial state: {clear(b), clear(c),on(c, a),handempty(),ontable(a),ontable(b)}
q Goal: {on(b, c),on(a, b)}
q Plan: (unstack(c, a),putdown(c),pickup(b), stack(b, c),pickup(a), stack(a, b))

c

ba

clear(b)
clear(c)

on(c,a)
handempty()

ontable(a)
ontable(b)

c

a

b

Goal: { on(b,c), on(a,b) }

MK:VI-56 Planning and Configuration © LETTMANN 2007-2021

Remarks:

q Despite a more detailed description of states, not all basic instances of operators are useful
in this specification, e.g. action unstack(a, a).

q A viable alternative is to describe operators using sort predicates and inequalities in the
condition parts and an adequate initial state:

operator : move(x, y, z)
precond : block(x),block(z), x 6= y, y 6= z, x 6= z,on(x, y), clear(x), clear(z)
effects : on(x, z),¬on(x, y), clear(y),¬clear(z)

operator : move(x, y, floor)
precond : block(x),block(y), x 6= y, y 6= floor , x 6= floor ,on(x, y), clear(x), clear(floor)
effects : on(x, z),¬on(x, y), clear(y)

Initial state: {block(a),block(b),block(c),block(d), a = a, b = b, c = c, d = d, floor =
floor ,on(d, a),on(c, d),on(a, floor),on(b, floor), clear(c), clear(floor)}

MK:VI-57 Planning and Configuration © LETTMANN 2007-2021

Planning Language
Classical Planning in STRIPS

Definition 6 (STRIPS Planning Problem, STRIPS Plan)

A STRIPS planning problem (S, sinit , cgoal) is given by

q a STRIPS model S,

q a start state sinit , and

q a goal cgoal defining conditions for goal states.

A plan (a1, . . . , ak) of actions, i.e. a sequence of ground instances of operators in O,
is a solution for the planning problem (S, sinit , cgoal) if and only if there are states
s1, . . . , sk such that with s0 = sinit

q ai is applicable in si−1 and leads to state si for i = 1, . . . , k and

q sk satisfies the goal condition cgoal .

Searching for plans on basis of a STRIPS model is domain-independent planning, because no

additional knowledge about meaningful actions, possible dead-ends, illegal states, etc. is involved.

But domain knowledge is needed for defining useful STRIPS models.

MK:VI-58 Planning and Configuration © LETTMANN 2007-2021

Remarks:

q Plan described by a sequence of actions are also called linear plans.

q The length of a plan is the number of actions contained in the sequence.

q The language of a STRIPS planning problem is implicitly given by the start state sinit and the
preconditions precond and the effects effects of the operators.

– Only predicates mentioned in these descriptions can occur in successor states.
– Only constants mentioned in these descriptions can occur in successor states.

q As the set of constants is finite, the finite set of operators O defines a finite set of actions A.

q Starting from the start state, the transitive closure of states reachable by actions defines a
finite set of states that can be described in S.

q States and actions define a transition function.

q The set of goal states F can be given as

F := {s state in S | cgoal is satisfied in s}

q Goal conditions in STRIPS planning problem could contain variables that are considered to
be existentially quantified. This is no increase in expressiveness. (A new operator can be
defined that uses this goal as precondition and some new ground atom l as consequence. A
plan for the planning problem to achieve l defines a plan for the original problem.)

MK:VI-59 Planning and Configuration © LETTMANN 2007-2021

	Restrictions of Planning
	STRIPS Language
	STRIPS Planning Problem

