
Chapter S:I

I. Introduction
❑ Examples for Search Problems
❑ Search Problem Abstraction
❑ Examples for AND-OR Search Problems

S:I-1 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
8-Queens Problem: Local Search

Task: Placement of queens on a board without threats.

Simplest method: Trial and Error

S:I-2 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
8-Queens Problem: Local Search (continued)

Task: Placement of queens on a board without threats.

Simplest method: Trial and Error

Q

Q

Q

Q

Q

Q

Q

Q

❑ A solution candidate is a placement of 8 queens.

❑ Solution candidates can be generated easily.

❑ Solution candidates can be checked easily.

❑ Problem: Search space of solution candidates is large, number of solutions is small.

❑ Systematic approach: Enumerate solution candidates thus exhausting the search space.

S:I-3 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
8-Queens Problem: Local Search (continued)

Task: Placement of queens on a board without threats.

Simplest method: Trial and Error

Q

Q

Q

Q

Q

Q

Q

Q

❑ A solution candidate is a placement of 8 queens.

❑ Solution candidates can be generated easily.

❑ Solution candidates can be checked easily.

❑ Problem: Search space of solution candidates is large, number of solutions is small.

❑ Systematic approach: Enumerate solution candidates thus exhausting the search space.

S:I-4 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
8-Queens Problem: Local Search (continued)

Task: Placement of queens on a board without threats.

Simplest method: Trial and Error

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

❑ A solution candidate is a placement of 8 queens.

❑ Solution candidates can be generated easily.

❑ Solution candidates can be checked easily.

❑ Problem: Search space of solution candidates is large, number of solutions is small.

❑ Systematic approach: Enumerate solution candidates thus exhausting the search space.

S:I-5 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
8-Queens Problem: Local Search (continued)

Task: Placement of queens on a board without threats.

Local search approach: Test and Improve

Q

Q

Q

Q

Q

Q

Q

Q

�

Q

Q

Q

Q

Q

Q

Q

Q

❑ A solution candidate is a placement of 8 queens. An initial candidate is given.

❑ Operators generate a neighborhood of solution candidates; one of it is selected.

❑ A heuristic function determines the cost/merit of a solution candidate.

❑ Local search algorithm example: Hill-Climbing

❑ Problem: Local optima cannot be overcome.
S:I-6 Introduction © Stein/Lettmann/Hagen 1998–2021

Remarks:

❑ The ’minimum-conflicts’ heuristic – moving the piece with the largest number of conflicts to
the square in the same column where the number of conflicts is smallest – is particularly
effective: it finds a solution to the 1,000,000 queen problem in less than 50 steps on average.
. . . A ’reasonably good’ starting point can for instance be found by putting each queen in its
own row and column so that it conflicts with the smallest number of queens already on the
board. [Wikipedia (access 2021/09/08)]

❑ A hill-climbing algorithm will try to minimize the number of conflicts on the board. The
resulting configuration of the queens may be a local minimum in its neighborhood.

S:I-7 Introduction © Stein/Lettmann/Hagen 1998–2021

https://en.wikipedia.org/wiki/Eight_queens_puzzle#Exercise_in_algorithm_design

Examples for Search Problems
8-Queens Problem: Local Search (continued)

Problem: n-Queens (8-Queens as special case)

Instance: Empty chessboard of size n× n and n queens to place.

Solution: Board positions for all queens
so that no two queens threaten each other.

Local search algorithmization

1. Encoding of solution candidates:
(A2, B5, C3, D8, E7, F6, G4, H1)

2. Cost/merit function for solution candidates:
Number of queens in conflict.

3. Operators:
Compute neighboring solution candidates, e.g. by changing the position of a
queen in its row.

4. Hillclimbing algorithm:
Continue with a most promising solution candidate in the neighborhood.

S:I-8 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
8-Queens Problem: Solution Construction

Constructive approach: Incremental placement of queens.

ZYX

Q

Q

Q

S:I-9 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
8-Queens Problem: Solution Construction (continued)

Constructive approach: Incremental placement of queens.

Analysis of the current board: Solution found? Meaningful next placements?

ZYX

Q

Q

Q

S:I-10 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
8-Queens Problem: Solution Construction (continued)

Constructive approach: Incremental placement of queens.

Analysis of possible successor boards: Best successor?

X

Q

Q

Q
Y

Q

Q

Q
Z

Q

Q

Q

❑ A candidate is a placement of some first queens.

❑ Each queen defines constraints (restrictions).

❑ Monotone situation: constraint violations cannot be repaired.

S:I-11 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
8-Queens Problem: Solution Construction (continued)

Desired: A heuristic for the next queen’s placement.

Idea: Which placement x is least restrictive regarding future decisions?

S:I-12 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
8-Queens Problem: Solution Construction (continued)

Desired: A heuristic for the next queen’s placement.

Idea: Which placement x is least restrictive regarding future decisions?

❑ Heuristic 1: Maximize h1(x) = number of unattacked cells.

h1(X) = 8

h1(Y) = 9

h1(Z) = 10

❑ Heuristic 2: Maximize h2(x) = min{uc(x, r) | r is row without queen}, where
uc(x, r) is the number of unattacked cells in row r if queen on x.

h2(X) = 1

h2(Y) = 1

h2(Z) = 2

S:I-13 Introduction © Stein/Lettmann/Hagen 1998–2021

Remarks:

❑ The described idea became known in the field of Artificial Intelligence as the Principle of
Least Commitment.

❑ Both 8-Queens heuristics assess the board after the next placement.

❑ Both 8-Queens heuristics compute merit values (not costs).

❑ These heuristics are helpful when solving the 8-Queens problem by greedy best-first search
or informed depth-first search: successor states are processed in order of their promise
which is defined by the heuristic.

❑ The 8-queens problem is an example of a problem that ideally is solved with a direct search
approach. Among all placements of 8 queens we want to minimize the number of threatened
queens. We translate this problem into one that allows a constructive approach: "Find a
sequence of placements of single queens that ends with a desired board configuration." So,
we are searching for a sequence of steps, although we are only interested in where the last
step leads us to.

S:I-14 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
8-Queens Problem: Solution Construction (continued)

Possible solutions:

Y

Y

Y

Y

Y

Q

Q

Q

Z

Z

Z

Z

Z

Q

Q

Q

S:I-15 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
8-Queens Problem (continued)

Comparison of h1 and h2:

❑ consider computational effort

❑ consider early recognition of dead ends:

Predicate ⊥f (x), x ∈ {X, Y, Z}: “x is a dead end under f ”

⊥h1
(x) =

{
True If h1(x) < number of remaining rows,

False Otherwise.

⊥h2
(x) =

{
True If h2(x) = 0,

False Otherwise.

Heuristic 2 is more general than Heuristic 1: ⊥h1 (x) ⇒ ⊥h2 (x)

Compare the definition of “more general” in [
::::::
ML:II

:::::::::
Concept

:::::::::::
Learning:

::::::::
Search

:::
in

:::::::::::::
Hypothesis

:::::::
Space].

S:I-16 Introduction © Stein/Lettmann/Hagen 1998–2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/machine-learning/unit-en-concept-learning.pdf#definition-more-general-than

Examples for Search Problems
8-Queens Problem: Solution Construction (continued)

Problem: n-Queens (8-Queens as special case)

Instance: Empty chessboard of size n× n and n queens to place.

Solution: Board positions for all queens
so that no two queens threaten each other.

Algorithmization of the constructive approach

1. Encoding of partial solutions (facilitated by encoding of candidates):
(A2, B5, C3, *, *, *, *, *)

2. Cost/merit function for partial solutions:
E.g. function h1 or h2.

3. Operators:
Placement of a queen in the next empty row (without resulting threats).

4. Greedy algorithm:
Continue with a most promising placement of the next queen.

S:I-17 Introduction © Stein/Lettmann/Hagen 1998–2021

Remarks:

❑ Obviously, the encoding of partial solutions is based on the encoding of solution candidates:
(A2, B5, C3, D8, E7, F6, G4, H1)

❑ A greedy algorithm will also try to minimize the number of conflicts on the board. The
resulting configuration of the queens, however, might not be a local minimum in its
neighborhood, if neighborhood is defined by changing positions of not only the last queen.

❑ The 8-Queens problem can be generalized by allowing boards of different sizes or shapes.
Then, additional parameters are needed in a description of a problem instance (not just
n ∈ N for n× n chessboards and n queens).

❑ In the 8-Queens problem we are interested in board configurations. Such a configuration is
easily computed from the sequence of placements, but the sequence contains additional
information that is not needed (e.g., the order of placements). The encoding of solution
candidates as lists enables a step-by-step construction of solution candidates.

S:I-18 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
8-Puzzle Problem

Task: Moving tiles on the board to reach a target state.

1 8

7 56

4

32

1

8

7 56

4

32

1 8

7 56

4

32

1 8

7 56

4

32

A CB

right leftup

S:I-19 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
8-Puzzle Problem (continued)

Constructive approach: Adding moves one by one to an initially empty sequence.

Desired: A heuristic for the next move.

Idea: Which move x minimizes the “distance” to the goal state?

S:I-20 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
8-Puzzle Problem (continued)

Constructive approach: Adding moves one by one to an initially empty sequence.

Desired: A heuristic for the next move.

Idea: Which move x minimizes the “distance” to the goal state?

❑ Heuristic 1: Minimize h1(x), with h1(x) = number of non-matching tiles.

h1(A) = 2

h1(B) = 3

h1(C) = 4

❑ Heuristic 2: Minimize h2(x), with h2(x) = sum of city block (Manhattan)
distances of non-matching tiles.

h2(A) = 2

h2(B) = 4

h2(C) = 4

S:I-21 Introduction © Stein/Lettmann/Hagen 1998–2021

Remarks:

❑ In the 8-Puzzle problem the goal state (final configuration) is known, while in the 8-Queens
problem the goal state is unknown and has to be determined.

❑ Both 8-Puzzle heuristics assess the unsolved rest problem.

❑ Both 8-Puzzle heuristics compute cost values (not merits).

❑ “Wrong” decisions can be repaired.

❑ Infinitely long move sequences are possible.

S:I-22 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
8-Puzzle Problem (continued)

Problem: (n2 − 1)-Puzzle (8-Puzzle as a special case, fixed set of possible moves)

Instance: qs. Initial board configuration.
qγ. Final board configuration.

Solution: A sequence of moves that transforms the initial configuration qs
into the final configuration qγ.

Algorithmization of the constructive approach

1. Encoding of partial solutions:
(mi)

N
i=1 with mi ∈ {up,down, left, right}, N ∈ N (initial part to be continued)

2. Cost/merit function for partial solutions:
E.g. function h1 or h2.

3. Operators:
Extend the sequence of moves by a legal move.

4. Greedy algorithm:
Continue with a most promising next move.

S:I-23 Introduction © Stein/Lettmann/Hagen 1998–2021

Remarks:

❑ Obviously, the number of possible sequences of moves is infinite. Therefore, enumerating
and testing the sequences is an approach to solving the problem without guarantee of
termination. But since the number of board configurations is finite, this number can serve as
an upper bound to the length of move sequences we have to consider. If a board
configuration occurs twice when performing the moves, there is a shorter sequence resulting
in the same outcome.

❑ The 8-Puzzle problem can be generalized by allowing boards of different sizes or shapes.
Then, additional parameters are needed in a description of a problem instance (e.g.,
m,n ∈ N for rectangular boards with m rows and n columns).

❑ Additional restrictions can be placed on solutions to the 8-Puzzle problem. The task can be
the identification of a shortest sequence or of a sequence that is shorter than a given
maximum length.

❑ The following decision problem is NP-complete:

Let be given an initial configuration and a target configuration of n2 − 1 tiles on an
n× n board, n ∈ N, and let be given a bound k, k ∈ N.
Is there a sequence of at most k moves that transforms the initial configuration into
the target configuration?

The corresponding optimization problem of finding a shortest move sequence is NP-hard.
[Ratner, Warmuth: Finding a Shortest Solution for the N ×N Extension of the 15-PUZZLE Is Intractable.
AAAI-86, pp. 168–172.]

S:I-24 Introduction © Stein/Lettmann/Hagen 1998–2021

https://www.aaai.org/Papers/AAAI/1986/AAAI86-027.pdf

Examples for Search Problems
Traveling Salesman Problem (TSP)

Task: Visiting each town exactly once in a round trip (Hamiltonian cycle).

A

B

C

F

D

E

A

B

C

F

D

E

B

C

F

D

E

A

. . .

S:I-25 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
Traveling Salesman Problem (continued)

Constructive approach: Adding towns one by one to a trip (=seq. of towns to visit).

Desired: A heuristic for the most suited next town x.

Idea: What is a lower bound for the shortest round trip possible then?

S:I-26 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
Traveling Salesman Problem (continued)

Constructive approach: Adding towns one by one to a trip (=seq. of towns to visit).

Desired: A heuristic for the most suited next town x.

Idea: What is a lower bound for the shortest round trip possible then?

❑ Heuristic 1: For the remaining vertices V ′ ⊂ V minimize the edge weight of a
subgraph on V ′ whose degree is ≤ 2.

❑ Heuristic 2: For the remaining vertices V ′ ⊂ V compute the edge weight of a
minimum spanning tree.

S:I-27 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
Traveling Salesman Problem (continued)

A

B

C

F

D

E

A

B

C

F

D

E

B

C

F

D

E

A

Estimation of
Completion Cost

Current State

Heuristic 1: Heuristic 2:
Cheapest Degree-2 Graph Minimum Spanning Tree

S:I-28 Introduction © Stein/Lettmann/Hagen 1998–2021

Remarks:

❑ Both TSP heuristics compute cost values (not merits).

❑ Both TSP heuristics are optimistic: they underestimate the cost of the rest tour.

❑ The cost of a candidate is computed as the sum of true cost of the completed part of the tour
plus the estimated cost of the rest tour.

S:I-29 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
Traveling Salesman Problem (continued)

Problem: Traveling Salesman Problem

Instance: G. A weighted finite graph.
A. Start vertex for the round-trip.

Solution: A shortest cycle (path starting and ending in A)
that visits each other vertex of G exactly once.

Algorithmization of the constructive approach

1. Encoding of partial solutions:
(vi)

N
i=0 with v0 = A, vi vertices in G, N ∈ N (initial part to be continued)

2. Cost/merit function for partial solutions:
E.g. function h1 or h2.

3. Operators:
Extend a path by appending some adjacent vertex.

4. Greedy algorithm:
Continue with a most promising next vertex.

S:I-30 Introduction © Stein/Lettmann/Hagen 1998–2021

Remarks:

❑ Obviously, there is only a finite number of paths without cycles. Therefore, enumerating and
testing these paths is a possible approach to solving the problem.

❑ The traveling salesman problem TSP is NP-hard. Additional restrictions can be placed on
solutions to the problem. The task can be the identification of a round-trip that is shorter than
a given maximum length. This decision problem is NP-complete.

S:I-31 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
Minimum Spanning Tree Problem

Task: Find a spanning tree of minimum weight in an undirected graph.

6
4

18

9
9

9

9
9

10

4
5

9

8

3

2

2
7

8

3

14

Constructive approach: Adding edges one by one to create a subtree of the graph.

Desired: A heuristic for the most suited next edge e.

Idea: Add a cheapest edge to some vertex not already in the subtree?

S:I-32 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
Minimum Spanning Tree (continued)

Prim’s Algorithm: (assuming a connected graph)
1. Initialize a tree with a single vertex, chosen arbitrarily from the graph.
2. Grow the tree by one edge:

of the edges that connect the tree to vertex not yet in the tree, find the minimum-weight edge,
and transfer it to the tree.

3. Repeat step 2 until all vertices are in the tree.

Kruskal’s Algorithm: (assuming a connected graph)
1. Create a forest F (a set of trees), where each vertex in the graph is a separate tree
2. Create a set S containing all the edges in the graph.
3. Decrease the size of the forest considering edge by edge:

Remove an edge with minimum weight from S and, if the removed edge connects two
different trees in F , then replace these trees in F by the combined two tree (using the edge).

4. Repeat step 3until S is empty or F consists of a single tree..

Q. How to characterize these algorithms with respect to

❑ the type of search and
❑ the heuristics used?

S:I-33 Introduction © Stein/Lettmann/Hagen 1998–2021

Remarks:

❑ For a graph G = (V,E) Prim’s algorithm runs in time O(|V |2) (using an adjacency matrix) or
O(|E|+ |V | log |V |) (using Fibonacci heaps) and Kruskal’s algorithm in time O(|E| log |E|).
[Wikipedia]

S:I-34 Introduction © Stein/Lettmann/Hagen 1998–2021

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Examples for Search Problems
MaxSAT Problem

Task: Find a truth assignment that satisfies most of the clauses.

Propositional formula α in conjunctive normal form (CNF)

(¬x1 ∨ x3 ∨ x7 ∨ ¬x9)

∧ (x2 ∨ ¬x3 ∨ ¬x5 ∨ x6 ∨ ¬x8)

∧ (¬x2 ∨ x7 ∨ x8)

∧ (x1 ∨ ¬x2 ∨ ¬x3 ∨ x9)
...

∧ (¬x3 ∨ x4 ∨ ¬x6 ∨ x7 ∨ ¬x8)

S:I-35 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
MaxSAT Problem (continued)

Task: Find a truth assignment that satisfies most of the clauses.

Propositional formula α in conjunctive normal form (CNF)

(¬x1 ∨ x3 ∨ x7 ∨ ¬x9)

∧ (x2 ∨ ¬x3 ∨ ¬x5 ∨ x6 ∨ ¬x8)

∧ (¬x2 ∨ x7 ∨ x8)

∧ (x1 ∨ ¬x2 ∨ ¬x3 ∨ x9)
...

∧ (¬x3 ∨ x4 ∨ ¬x6 ∨ x7 ∨ ¬x8)

Local Search: Start from an arbitrary truth assignment for the variables in α and
iteratively flip truth values assigned to variables.

Heuristics:

GSAT: Flip the truth value of a variable so that the number of satisfied clauses
increases the most.

WalkSAT: Flip the truth value of a variable in an unsatisfied clause.
S:I-36 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
MaxSAT Problem (continued)

Problem: MaxSAT

Instance: α. Propositional formula in CNF.

Solution: Truth assignment that satisfies most of the clauses in α.

Local search algorithmization

1. Encoding of solution candidates:
(x1 7→ true, x2 7→ false, . . . , xn 7→ true)

2. Cost/merit function for solution candidates:
Number of clauses satisfied.

3. Operators:
Flip the truth assignment of a variable.

4. Hillclimbing algorithm:
Try a most promising flipping.

S:I-37 Introduction © Stein/Lettmann/Hagen 1998–2021

Remarks:

❑ There is no unique way of constructing an assignment by iterated flipping of truth
assignments for variables.

❑ Restarting the algorithm with a new random assignment can help when getting stuck in a
local maximum of numbers of satisfied clauses.

❑ The optimization problem MaxSAT requires for a given CNF formula to determine the
maximum number of clauses that can be satisfied by any truth assignment. Since this
maximum number is not known in advance, the only termination criterion is that all clauses
are satisfied. Therefore, either all possible truth assignments have to be tested or the
algorithm may have found only a local maximum.

❑ The satisfiability problem SAT (Decision problem: Is a given CNF Formula satisfiable?) is
NP-complete, the optimization problem MaxSAT is NP-hard. (If there were a polynomial time
algorithm for MaxSAT, we would be able to decide SAT in polynomial time.)

S:I-38 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
MaxSAT Problem (continued)

Task: Find a truth assignment that satisfies most of the clauses.

Propositional formula α in conjunctive normal form (CNF)

(¬x1 ∨ x3 ∨ x7 ∨ ¬x9)

∧ (x2 ∨ ¬x3 ∨ ¬x5 ∨ x6 ∨ ¬x8)

∧ (¬x2 ∨ x7 ∨ x8)

∧ (x1 ∨ ¬x2 ∨ ¬x3 ∨ x9)
...

∧ (¬x3 ∨ x4 ∨ ¬x6 ∨ x7 ∨ ¬x8)

Constructive approach: Incrementally assign truth values to variables until all
variables in α have a truth value.

Heuristics:

E.g. assign a truth value to a variable that satisfies most of the unsatisfied clauses.

S:I-39 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
MaxSAT Problem (continued)

Problem: MaxSAT

Instance: α. Propositional formula in CNF.

Solution: Truth assignment that satisfies most of the clauses in α.

Algorithmization of the constructive approach

1. Encoding of partial solutions:
(x1 7→ true, x2 7→ false, x3 7→ ∗, . . . , xn 7→ ∗)

2. Cost/merit function for partial solutions:
Number of clauses satisfied.

3. Operators:
Assign a truth value to an unassigned variable.

4. Greedy algorithm:
Continue with a most promising assignment.

S:I-40 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
Road-Map Problem

Task: Find for a shortest freeway connection from Cologne to Oberhausen.

Cologne

Dortmund

Paderborn

Oberhausen

S:I-41 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
Road-Map Problem (continued)

Task using a graph model: Find a shortest path from A to B.

A

B

❑ Vertices represent crossings, junctions, endpoints, . . .
❑ Edges represent roads in between.
❑ Edge labels denote the length of a road between two vertices.

S:I-42 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
Road-Map Problem (continued)

Problem: Road-Map Problem

Instance: G. A weighted finite graph representing a map with distances.
A,B. Start vertex and end vertex for the trip.

Solution: A shortest path starting in A and ending in B.

Local search algorithmization

1. Encoding of solution candidates:
vertex sequences (vi)

N
i=0 with v0 = A, vN = B, vi vertices in G, N ∈ N, N ≥ 1

2. Cost/merit function for solution candidates:
Sum of road section lengths for pairs (vi, vi+1) in the vertex sequence (∞ if
there is no edge between vi and vi+1)

3. Operators:
Replace a subsequence of vertices by some other sequence of vertices.

4. Heuristic:
Try a most promising sequence first.

S:I-43 Introduction © Stein/Lettmann/Hagen 1998–2021

Remarks:

❑ It would be helpful, if we could use paths (or even acyclic paths from A to B) instead of
arbitrary sequences of vertices. In this case, however, the construction of solution candidates
and their neighborhood is no longer trivial.

❑ Operators could be more deliberately designed so that they do not result in sequences
containing multiple occurrences of a single vertex.

❑ Instead of using ∞ as distance for missing edges we can use a ¨high¨ value.

❑ The step-by-step construction of paths from A to B is the more natural approach.

S:I-44 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
Road-Map Problem (continued)

Task using a graph model: Find a shortest path from A to B.

Constructive approach: Adding a further edge to a path.

P

A

B

Desired: A heuristic for selection of a promising path to continue.

S:I-45 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
Road-Map Problem (continued)

Task using a graph model: Find a shortest path from A to B.

Constructive approach: Adding a further edge to a path.

Euclidean
Distance

P

A

B

Desired: A heuristic for the selection of a promising path to continue.

Idea: Which path takes us next to our target?

Heuristic: Minimize Euclidean distance between current position and target.
S:I-46 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
Road-Map Problem (continued)

Task using a graph model: Find a shortest path from A to B.

Constructive approach: Adding a further edge to a path.

A

B

Possible continuations of the selected path will be considered as new candidates.

S:I-47 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
Road-Map Problem (continued)

Problem: Road-Map Problem

Instance: G. A weighted finite graph representing a map with distances.
A,B. Start and end vertices for the trip.

Solution: A shortest path starting in A and ending in B.

Algorithmization of the constructive approach

1. Encoding of partial solutions:
Paths (vi)

N
i=0 in G with v0 = A, vi vertices in G, N ∈ N, N ≥ 1

2. Cost/merit function for partial solutions:
Euclidean distance between vN and B

(neglecting the length of the path to vN).

3. Operators:
Extend the path by a move to an adjacent junction.

4. Greedy algorithm:
Continue with a most promising junction.

S:I-48 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
Blocks-World Planning

Task: Rearrange the blocks.

ab

c
�

a

b

c

Floor

Blocks

Gripper

A gripper moves single blocks (clear blocks with no other block on top) to new
positions either on top of a clear block or on the floor.

S:I-49 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
Blocks-World Planning

Task: Rearrange the blocks.

ab

c
�

a

b

c

Floor

Blocks

Gripper

A gripper moves single blocks (clear blocks with no other block on top) to new
positions either on top of a clear block or on the floor.

Desired: A heuristic for the next move.

Idea: Which move x minimizes the “distance” to the target configuration?

Heuristic: E.g., use the number of moves needed ia a simplified version
of the problem. Gross simplification: Moves have no preconditions.

S:I-50 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for Search Problems
Blocks-World Planning (continued)

Problem: Blocks-World Planning (fixed set of possible moves)

Instance: qs. Initial block configuration.
qγ. Final block configuration.

Solution: A sequence of moves that transforms the initial configuration qs
into the final configuration qγ.

Algorithmization of the constructive approach

1. Encoding of partial solutions:
(opi)

N
i=1 with opi a gripper operation on some block, N ∈ N (initial part to be

continued)

2. Cost/merit function for partial solutions

3. Operators:
Extend the sequence of gripper operations by some possible next operation.

4. Greedy algorithm:
Continue with a most promising next operation.

S:I-51 Introduction © Stein/Lettmann/Hagen 1998–2021

Remarks:

❑ Logical descriptions of Blocks World Planning states use predicates "on(x, y)" (semantics:
block x is on block y) and "onfloor(x)" for the position of blocks.

❑ The problem instance depicted is called Sussman Anomaly. This anomaly illustrates the
weakness of planning algorithms that try to solve a task by appending plans for achieving
single properties (e.g., "on(b, c)" and "on(a, b)"). Optimum plans for these subgoals cannot be
appended to each other to form a solution of the depicted instance.

S:I-52 Introduction © Stein/Lettmann/Hagen 1998–2021

Search-Problem Abstraction
Local Search Approach

Observations

❑ Problem settings are characterized by solution candidates.

❑ Task is to find a candidate satisfying given properties, e.g. solution or "best"
solution.

❑ There is a set of well-defined steps to traverse from one candidate to another.
By applying these steps the "neighborhood" of a candidate can be computed.

❑ Problem solving is done stepwise

❑ Starting candidates can be chosen arbitrarily.

➜ Systematic Approach:
Enumeration of candidates.

➜ Heuristic Approach:
Hill-Climbing with restarts.

S:I-53 Introduction © Stein/Lettmann/Hagen 1998–2021

Search Problem Abstraction
Local Search Approach (continued)

Formal Representation

(S, T, s, F) Transition System (aka. State Transition System)

S A set of solution candidates of a problem.
T ⊆ S × S A transition relation defining the neighboring solution candidates.
s ∈ S An initial solution candidate to start from.
F ⊆ S A set of solution candidates that are solutions.

Task: Find a solution candidate γ with γ ∈ F .

Search: Traverse S using T starting from s.

Knowledge: A function f ∗ : S → R assigning cost / merit / utility values to candidates
such that F is the set of (nearly) optimum candidates in S.

S:I-54 Introduction © Stein/Lettmann/Hagen 1998–2021

Remarks:

❑ Candidates in S are often represented by feature vectors, e.g. a vector of positions (A2, B5,
C3, D8, E7, F6, G4, H1) in the 8-queens example.

❑ Transitions in T are often defined by generic operators working on candidate representations,
e.g. an operator can compute the next candidate in an enumeration:

(A2, B5, C3, D8, E7, F6, G4, H2) for (A2, B5, C3, D8, E7, F6, G4, H1) and

(A2, B5, C3, D8, E7, F6, G5, H1) for (A2, B5, C3, D8, E7, F6, G4, H8).

❑ The idea of using knowledge to guide search is that an evaluation function f ∗ describes a
smooth landscape for s with respect to T .

❑ In constraint satisfaction problems (8-Queens), f could determine the number of threats in a
solution candidate and thus estimate the closeness to a solution. Distance to a solution, on
the other hand, could be used as an optimization criterion making a constraint satisfaction
problem an optimization problem.

S:I-55 Introduction © Stein/Lettmann/Hagen 1998–2021

Search Problem Abstraction
Solution Construction

Observations

❑ Problem settings are characterized by (problem) states / (rest) problems.

❑ There is a set of well-defined steps to traverse from one state to another
(problem solving steps).

❑ Task is to find a sequence / an "optimum" sequence of steps leading to a
state satisfying given properties, e.g. goal state (solved problem).

❑ A state can be characterized by the question "What is (left) to be done?"
(States correspond to remaining problems.)

➜ Systematic Approach:
Enumeration of step sequences.

➜ Heuristic Approach:
Greedy Search.

S:I-56 Introduction © Stein/Lettmann/Hagen 1998–2021

Search Problem Abstraction
Solution Construction (continued)

Formal Representation

(S, T, s, F) Transition System (aka. State Transition System)

S A set of states (the remaining problems).
T ⊆ S × S A transition relation defining the solution steps to solve the problem

(problem solving / simplification steps).
s ∈ S An initial state (start problem) to start from.
F ⊆ S A set of states that are goals (solved problems).

Task: Find a sequence of transitions leading from s to some γ with γ ∈ F

(sequence of steps solving the start problem).
➜ Find a path from s to γ in graph (S, T).

Search: Traverse set of paths in graph (S, T) that are starting in s.

Knowledge: A function f : S<N → R assigning estimated cost / merit values
to finite transition sequences (a sequence of problem solving /
simplification steps given as state sequences) starting in s.

S:I-57 Introduction © Stein/Lettmann/Hagen 1998–2021

Remarks:

❑ States in S are often represented by feature vectors, e.g. a vector of positions
(A2, B5, C3, *, *, *, *, *) in the 8-queens example. Remaining problem: Replace wildcards *
by positions.

❑ Transitions in T are often defined by generic operators working on state representations, e.g.
an operator can compute a next positioning of a queen from the current board:

(A2, B5, C3, D8, *, *, *, *) for (A2, B5, C3, *, *, *, *, *).

(Of course, this can be done in more or less sophisticated ways.)

❑ The idea of using knowledge to guide search is that an evaluation function f estimates
optimum cost / merit of transition sequences continuing the given one and ending in a goal
state.

S:I-58 Introduction © Stein/Lettmann/Hagen 1998–2021

Remarks:

❑ There is no guarantee that S is finite, not even enumerable. Usually, we deal with
approximations (discretizations) of real world solution candidate sets.

❑ F must not be known explicitly. Usually, a test procedure is given implementing a function
that returns true given some state s if and only if s ∈ F . For the 8-Puzzle Problem the goal
state is known (solved problem: current configuration on the board is target configuration), for
the 8-Queens Problem we usually don’t know goal states (solved problem: positions for 8
queens without threats). In both examples the sequence of transitions (problem solving /
simplification steps) that has to be determined is unknown.

❑ In planning, description languages are used to specify the state transition systems underlying
a planning problem. A commonly used example is the Planning Domain Definition Language
(PDDL), which was inspired by STRIPS and ADL.
States are characterized by their properties and transitions (or actions) describe the changes
in the properties of a state.

❑ In all above examples, a solution is incrementally constructed as a sequence of operator
applications (next move, next town, . . .).

S:I-59 Introduction © Stein/Lettmann/Hagen 1998–2021

Search Problem Abstraction
Solution Construction: Abstract Problem Setting

Problem: Reachability Problem for State Transition Systems

Instance: (S, T, s, F). A transition system.
s. Initial state.

Solution: A sequence of transitions leading from s to a state in F .

Algorithmization of the constructive approach

1. Encoding of partial solutions:
(si)

N
i=0 with s0 = s, si states in S, (si, si+1) in T (initial seq. to be continued).

2. Cost/merit function f for partial solutions.

3. Operators:
Extend the sequence of states by a state reachable via a next transition in T .

4. Greedy algorithm:
Continue with a most promising sequence.

S:I-60 Introduction © Stein/Lettmann/Hagen 1998–2021

Search Problem Abstraction
Questions in Problem Solving as Search

❑ What is the original task?

❑ What is the structure of solution candidates?
How can solution candidates be constructed?

❑ What is a useful problem-solving view on the original task?

❑ What is the initial problem in a constructive approach?

❑ Which operations (solution steps) are possible to simplify a problem?

❑ Which rest problems result from such problem simplifications?

❑ What knowledge can guide the problem solving process / the search?

➜ How can the original task be modeled

– by adequate abstraction and encoding of solution candidates and
– by providing problem solving knowledge

in such a way that efficient search algorithms can be formulated?

S:I-61 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for AND-OR Search Problems
The Counterfeit Coin Problem

❑ 12 coins are given, one of which is known to be heavier or lighter.

❑ 3 weighing tests are allowed to find the counterfeit coin.

S:I-62 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for AND-OR Search Problems
The Counterfeit Coin Problem

❑ Task: Find a weighing strategy.
What to weigh first, second, etc.?
How to process different weighing outcomes?

❑ Problem decomposition:
Different weighing outcomes are handled as independent cases.

❑ The role of heuristics: focus on the most promising weighing strategy.

S:I-63 Introduction © Stein/Lettmann/Hagen 1998–2021

Remarks:

❑ Each rest problem (specified as state) can be described by knowledge already acquired
through the preceding tests. A coin belongs to one of the following four categories: not-heavy,
not-light, not-suspect, unknown (= none of the first three categories).

❑ A weighing action is the selection of a number of coins (for each pan the same number) and
to test the selection.

❑ After each test, the category information of each coin is updated. For instance, if some coin
was assigned to “not-light” and from the weighing outcome follows “not-heavy”, its new
category becomes “not-suspect”.

❑ Each weighing action leads to one of three possible outcomes all of which must be dealt with.
The most suitable weighing strategy depends on the objective to be optimized:

1. If the maximum number of weighing actions is to be minimized, treat the most difficult
outcome next.

2. If the expected number of weighing actions is to be minimized, treat the most likely
outcome next.

S:I-64 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for AND-OR Search Problems
The Counterfeit Coin Problem (continued)

Representation of a weighing strategy

identified
heavy

counterfeit
P0.3.1 P0.3.2 P0.3.3

R1 R2 R3 R1 R2 R3

identified
light

counterfeit

identified
light

counterfeit

R1: Balance tips
 right

R2: Balance
 tips left

R3: Balance
 neutral

P0.3: 10-suspect problemP0.1: 2-suspect problem

P0: 12-suspect problem

...

...

T0: Test with 2 coins

Test T0.1 Test T0.3

❑ Challenge: Avoid solving the same problem again and again.
❑ What is useful information about coins for representing remaining problems?

S:I-65 Introduction © Stein/Lettmann/Hagen 1998–2021

Remarks:

❑ Weighing strategies can be represented as trees (or acyclic directed graphs).

❑ For a problem at hand, we first constrain the problem by deciding which test to perform and
then we consider the possible outcomes of that test (the remaining problems).

❑ If the balance tips to one side, the counterfeit coin is among the coins just weighed. In the
example depicted, test T0.1 is then to weigh one of the two “suspect” coins against one of the
remaining ten “not-suspect” coins.

❑ Following a weighing strategy, the subset of “suspect” coins (and “not-light”, “not-heavy”,
“not-suspect”) changes over time. For a test, the participants are selected randomly from
these sets.

❑ Of course, more than two coins can be used in a weighing.

S:I-66 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for AND-OR Search Problems
The Counterfeit Coin Problem (continued)

Problem: The Counterfeit Coin Problem

Instance: C. A finite set of coins containing exactly one counterfeit coin.

Solution: A weighing strategy that identifies the counterfeit coin
and its failing (“too-light” or “too-heavy”).

S:I-67 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for AND-OR Search Problems
The Counterfeit Coin Problem (continued)

Problem: The Counterfeit Coin Problem

Instance: C. A finite set of coins containing exactly one counterfeit coin.

Solution: A weighing strategy that identifies the counterfeit coin
and its failing (“too-light” or “too-heavy”).

Algorithmization

1. Encoding of solution candidates:
Finite trees of the above type (= weighing strategies)
with leaves in which the counterfeit coin and its failing are known.

2. Encoding of partial solutions:
Finite trees of the above type without leaf condition.

3. Operators:
Extend a branch by a vertex representing a weighing decision and its
successors for the possible outcomes.

4. Greedy algorithm:
Extend a most promising partial weighing strategy.

S:I-68 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for AND-OR Search Problems
Tic-Tac-Toe Game [Wikipedia]

Tic-tac-toe is a game for two players, X and O, who take turns marking the spaces
in a 3× 3 grid. The player who succeeds in placing three of their marks in a
horizontal, vertical, or diagonal row wins the game.

S:I-69 Introduction © Stein/Lettmann/Hagen 1998–2021

https://en.wikipedia.org/wiki/Tic-tac-toe

Examples for AND-OR Search Problems
Tic-Tac-Toe Game [Wikipedia]

Tic-tac-toe is a game for two players, X and O, who take turns marking the spaces
in a 3× 3 grid. The player who succeeds in placing three of their marks in a
horizontal, vertical, or diagonal row wins the game.

❑ Task: Search a winning strategy for the first player (X)
Where to put the marks, first, second, etc.?
How to react to different moves of the opponent?

❑ Problem decomposition: different possible oponent moves are handled as
independent cases.

S:I-70 Introduction © Stein/Lettmann/Hagen 1998–2021

https://en.wikipedia.org/wiki/Tic-tac-toe

Examples for AND-OR Search Problems
Tic-Tac-Toe Game (continued)

Representation of a game tree

Player X

Player X

Player X

Player O

Player O

... ...

... ...

...

...

...

...

...

... ...

...

...

...

... ...

...

...

...

...

...

......

...

...

...

...

...

...

❑ Challenge: Game trees can be huge.
❑ How can the winning potential of a game situation be determined?

S:I-71 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for AND-OR Search Problems
Tic-Tac-Toe Game (continued)

Problem: Tic-Tac-Toe Game

Instance: Empty 3× 3 grid, player X goes first.

Solution: A winning strategy for player X.

S:I-72 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for AND-OR Search Problems
Tic-Tac-Toe Game (continued)

Problem: Tic-Tac-Toe Game

Instance: Empty 3× 3 grid, player X goes first.

Solution: A winning strategy for player X.

Algorithmization

1. Encoding of solution candidates:
Finite trees of the above type with leaves in which the outcome of the game
(win/draw/loss) is clear.

2. Encoding of partial solutions:
Finite trees of the above type without leaf condition.

3. Operators:
Extend a branch by a possible move of the next player.

4. Greedy algorithm:
Extend a most promising partial game strategy.

S:I-73 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for AND-OR Search Problems
UNSAT Problem

Decide whether a propositional formula in CNF is unsatisfiable:

(¬x1 ∨ x3 ∨ x7 ∨ ¬x9)

∧ (x2 ∨ ¬x3 ∨ ¬x5 ∨ x6 ∨ ¬x8)

∧ (¬x2 ∨ x7 ∨ x8)

∧ (x1 ∨ ¬x2 ∨ ¬x3 ∨ x9)
...

∧ (¬x3 ∨ x4 ∨ ¬x6 ∨ x7 ∨ ¬x8)

S:I-74 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for AND-OR Search Problems
UNSAT Problem (continued)

Decide whether a propositional formula in CNF is unsatisfiable:

(¬x1 ∨ x3 ∨ x7 ∨ ¬x9)

∧ (x2 ∨ ¬x3 ∨ ¬x5 ∨ x6 ∨ ¬x8)

∧ (¬x2 ∨ x7 ∨ x8)

∧ (x1 ∨ ¬x2 ∨ ¬x3 ∨ x9)
...

∧ (¬x3 ∨ x4 ∨ ¬x6 ∨ x7 ∨ ¬x8)

Constructive approach: Incrementally assign truth values to variables until α
evaluates to true/false; possible truth values are handled as independent cases.

Heuristics:

DPLL: E.g. assign a truth value to a variable that occurs most often (product of no.
of positive and negative occurrences) in unsatisfied clauses so that the unsatisfied
parts of the formula resulting from the assignment (true/false) are similar in size
(reduction of tree size).

S:I-75 Introduction © Stein/Lettmann/Hagen 1998–2021

Remarks:

❑ For an unsatisfiability result, we have to ensure that all truth assignments have been tested.

❑ The complement of the satisfiability problem UNSAT (Decision problem: Is a given CNF
Formula not satisfiable?) is coNP-complete, i.e., it is the complement problem of an
NP-complete problem.

❑ In fact, any order of truth value assignments to variables leads to the same result: either the
formula is satisfied by some assignment or no assignment satisfies the formula.
Therefore, it is of interest to have a smallest strategy tree, i.e., a tree that minimal with
respect to external path length. The DPLL strategy tries to order the truth assignments in
such a way that the truth value of the formula can be decided "on average early".

S:I-76 Introduction © Stein/Lettmann/Hagen 1998–2021

Examples for AND-OR Search Problems
UNSAT Problem (continued)

Problem: UNSAT

Instance: α. Propositional formula in CNF.

Solution: A selection strategy for variables to assign truth values to
such that in all cases the formula evaluates to false.
(Proof of unsatisfiability)

Algorithmization of the constructive approach

1. Encoding of partial solutions:
(x1 7→ true, x2 7→ false, x3 7→ ∗, . . . , xn 7→ ∗)

2. Cost/merit function for partial solutions:
Number of clauses not satisfied.

3. Operators:
Assign a truth value to an unassigned variable.

4. Greedy algorithm:
Continue with a most promising variable.

S:I-77 Introduction © Stein/Lettmann/Hagen 1998–2021

	TOC Introduction
	Examples for Search Problems
	8-Queens Problem
	8-Puzzle Problem
	TSP Problem
	MST Problem
	MaxSAT Problem
	Road-Map Problem
	Blocks-World Planning

	Search-Problem Abstraction
	STS-Reachability Problem

	AND-OR Search Examples
	Counterfeit Coin Problem
	Tic-Tac-Toe Game
	UNSAT Problem

