
Block Abstraction Memoization
with Copy-On-Write Refinement

Karlheinz Friedberger

LMU Munich, Germany

05.09.2017



Introduction
Basic Problem with Software Verification

Problem:
I computation of abstract state space at once is expensive

Approaches of BAM:
I split into smaller problems and solve them separately
I use a cache for intermediate results

Benefits of BAM:
I implemented as top-level CPA
I independent of sub-analysis (PA, VA, IA,... and

combinations)
I modular approach: optimization and heuristics

Karlheinz Friedberger LMU Munich, Germany 2 / 15



Introduction
Basic Problem with Software Verification

Problem:
I computation of abstract state space at once is expensive

Approaches of BAM:
I split into smaller problems and solve them separately
I use a cache for intermediate results

Benefits of BAM:
I implemented as top-level CPA
I independent of sub-analysis (PA, VA, IA,... and

combinations)
I modular approach: optimization and heuristics

Karlheinz Friedberger LMU Munich, Germany 2 / 15



Introduction
Basic Problem with Software Verification

Problem:
I computation of abstract state space at once is expensive

Approaches of BAM:
I split into smaller problems and solve them separately
I use a cache for intermediate results

Benefits of BAM:
I implemented as top-level CPA
I independent of sub-analysis (PA, VA, IA,... and

combinations)
I modular approach: optimization and heuristics

Karlheinz Friedberger LMU Munich, Germany 2 / 15



Introduction
Basics of BAM: Structure and Components

CFA divided into blocks
I functions or loops as block size
I block size defines entry and exit nodes

BAMCPA
I manage the analysis and the cache
I optimize cache access by using a Reducer

Combine with other components:
I CEGAR: specialized refinement (over several ARGs)
I Exporter: ARG & Graphml

Karlheinz Friedberger LMU Munich, Germany 3 / 15



Introduction
Basics of BAM: Structure and Components

CFA divided into blocks
I functions or loops as block size
I block size defines entry and exit nodes

BAMCPA
I manage the analysis and the cache
I optimize cache access by using a Reducer

Combine with other components:
I CEGAR: specialized refinement (over several ARGs)
I Exporter: ARG & Graphml

Karlheinz Friedberger LMU Munich, Germany 3 / 15



Introduction
Basics of BAM: Structure and Components

CFA divided into blocks
I functions or loops as block size
I block size defines entry and exit nodes

BAMCPA
I manage the analysis and the cache
I optimize cache access by using a Reducer

Combine with other components:
I CEGAR: specialized refinement (over several ARGs)
I Exporter: ARG & Graphml

Karlheinz Friedberger LMU Munich, Germany 3 / 15



Introduction
Overview of the CPAchecker Framework

Source
Code

Spec

ResultsParser &
CFA Builder

CEGAR
Algorithm

CPA
Algorithm

BAM
CPA

Spec
CPA

Location
CPA

Callstack
CPA

Predicate
CPA

sub-analysis

Karlheinz Friedberger LMU Munich, Germany 4 / 15



CEGAR with Lazy Refinement

I spurious error path found → refinement procedure
→ determines a new precision and a cutpoint
→ only a "minimal" part of the ARG is remove

BAM Refinement
I determine precision and cutpoint over several nested ARGs
I depends only on underlying analysis
I refine the "minimal" set of ARGs
I several heuristics:

I refine one, all, or some ARGs along error-path
I merge precisions from different sources

Karlheinz Friedberger LMU Munich, Germany 5 / 15



CEGAR with Lazy Refinement

I spurious error path found → refinement procedure
→ determines a new precision and a cutpoint
→ only a "minimal" part of the ARG is remove

BAM Refinement
I determine precision and cutpoint over several nested ARGs
I depends only on underlying analysis
I refine the "minimal" set of ARGs
I several heuristics:

I refine one, all, or some ARGs along error-path
I merge precisions from different sources

Karlheinz Friedberger LMU Munich, Germany 5 / 15



CEGAR with Lazy Refinement

Default state space exploration in BAM with refinement,
refinement applied with an in-place update of the ARG

Karlheinz Friedberger LMU Munich, Germany 6 / 15



CEGAR with Lazy Refinement

Default state space exploration in BAM with refinement,
refinement applied with an in-place update of the ARG

sError

scut

Karlheinz Friedberger LMU Munich, Germany 6 / 15



CEGAR with Lazy Refinement

Default state space exploration in BAM with refinement,
refinement applied with an in-place update of the ARG

sError

scut

Karlheinz Friedberger LMU Munich, Germany 6 / 15



Problem: Repeated Counterexamples

What is a repeated counterexample?
I an error path cannot be excluded from repeated exploration
I cycles of error paths (and refinements)

→ no progress in CEGAR

Karlheinz Friedberger LMU Munich, Germany 7 / 15



Problem: Repeated Counterexamples

Observation
I problem mostly appears with "big" programs,

e.g. with many blocks and several refinements
I small changes in programs cause large differences in

runtime of BAM

Manual analysis shows possible reasons
I deleting block abstractions (holes in the ARG)
I imprecise caching (aggressive caching) → heuristics
I imprecise reducer (Predicate Analysis) → heuristics

Karlheinz Friedberger LMU Munich, Germany 8 / 15



Problem: Repeated Counterexamples

Observation
I problem mostly appears with "big" programs,

e.g. with many blocks and several refinements
I small changes in programs cause large differences in

runtime of BAM

Manual analysis shows possible reasons
I deleting block abstractions (holes in the ARG)
I imprecise caching (aggressive caching) → heuristics
I imprecise reducer (Predicate Analysis) → heuristics

Karlheinz Friedberger LMU Munich, Germany 8 / 15



Problem: Repeated Counterexamples
The old Approach

And after the refinement?
I start exploration again
I when accessing a missing block,

recompute it or use another block abstraction from cache

Problem?
I interfering with other refinements

→ precision for a missing block?
→ re-compute nested blocks or take from cache?

I exporting incomplete data (witnesses, ARGs, statistics)

Idea: do not delete computed block abstractions

Karlheinz Friedberger LMU Munich, Germany 9 / 15



Problem: Repeated Counterexamples
The old Approach

And after the refinement?
I start exploration again
I when accessing a missing block,

recompute it or use another block abstraction from cache

Problem?
I interfering with other refinements

→ precision for a missing block?
→ re-compute nested blocks or take from cache?

I exporting incomplete data (witnesses, ARGs, statistics)

Idea: do not delete computed block abstractions

Karlheinz Friedberger LMU Munich, Germany 9 / 15



Problem: Repeated Counterexamples
The old Approach

And after the refinement?
I start exploration again
I when accessing a missing block,

recompute it or use another block abstraction from cache

Problem?
I interfering with other refinements

→ precision for a missing block?
→ re-compute nested blocks or take from cache?

I exporting incomplete data (witnesses, ARGs, statistics)

Idea: do not delete computed block abstractions

Karlheinz Friedberger LMU Munich, Germany 9 / 15



Improved Refinement Strategy
Use Copy-on-Write for Updates of the ARG

Karlheinz Friedberger LMU Munich, Germany 10 / 15



Improved Refinement Strategy
Use Copy-on-Write for Updates of the ARG

sError

scut

Karlheinz Friedberger LMU Munich, Germany 10 / 15



Improved Refinement Strategy
Use Copy-on-Write for Updates of the ARG

sError

scut

partial copy

s∗
cut

Karlheinz Friedberger LMU Munich, Germany 10 / 15



Improved Refinement Strategy
Use Copy-on-Write for Updates of the ARG

Computational overhead?
I old approach: removing a subtree needs O(N) time
I new approach: copying a subtree needs O(N) time
I only small increase in memory consumption:

→ flat copy of ARG states

More benefits
I no need to re-computate deletes blocks
I all information available at end of analysis
I immutable ARGs (after finished sub-analysis)

Karlheinz Friedberger LMU Munich, Germany 11 / 15



Improved Refinement Strategy
Use Copy-on-Write for Updates of the ARG

Computational overhead?
I old approach: removing a subtree needs O(N) time
I new approach: copying a subtree needs O(N) time
I only small increase in memory consumption:

→ flat copy of ARG states

More benefits
I no need to re-computate deletes blocks
I all information available at end of analysis
I immutable ARGs (after finished sub-analysis)

Karlheinz Friedberger LMU Munich, Germany 11 / 15



Evaluation (<=1 refinements)
Runtime of refinement approaches of BAM with predicate analysis

tasks with up to one refinement → no difference expected!

0 200 400 600 8001

10

100

1 000

n-th fastest result

CP
U

tim
e
(s
)

copy-on-write
in-place

Karlheinz Friedberger LMU Munich, Germany 12 / 15



Evaluation (>1 refinements)
Runtime of refinement approaches of BAM with predicate analysis

tasks with more than one refinement

0 400 800 1 200 1 6001

10

100

1 000

n-th fastest result

CP
U

tim
e
(s
)

copy-on-write
in-place

Karlheinz Friedberger LMU Munich, Germany 13 / 15



Evaluation (<=1 and >1 refinements combined)
Runtime of refinement approaches of BAM with predicate analysis

0 400 800 1 200 1 600 2 000 2 4001

10

100

1 000

n-th fastest result

CP
U

tim
e
(s
)

copy-on-write
in-place

Karlheinz Friedberger LMU Munich, Germany 14 / 15



Conclusion

Current status:
I works for most tasks
I slower on some tasks, faster on more tasks
I PA benefits most, VA only on some files

Future work:
I some heuristics might no longer be beneficial
I new: choose from several cache-entries for the same key?
I merge into trunk, maybe soon :-)

Karlheinz Friedberger LMU Munich, Germany 15 / 15



Conclusion

Current status:
I works for most tasks
I slower on some tasks, faster on more tasks
I PA benefits most, VA only on some files

Future work:
I some heuristics might no longer be beneficial
I new: choose from several cache-entries for the same key?
I merge into trunk, maybe soon :-)

Karlheinz Friedberger LMU Munich, Germany 15 / 15


