In this chapter ...

Learn about:

- Kripke structures
 - formal model of a system
 - used for defining $M \models \varphi$
 - model checking algorithms operate on Kripke structures (and other models)
- Promela (language of SPIN)

Models written in higher-level languages (e.g. Promela) can be translated to Kripke structures

 Prof. Dr. Heike Wehrheim
 Model Checking
 WS 18/19
 43/423
 Prof. Dr. Heike Wehrheim
 Model Checking
 WS 18/19
 44/423

Kripke structure (1)

Modelling

Kripke structures model

- states of a system \approx valuation of variables + program counters (snapshot at some moment during execution)
- transitions: state changes

runs/computations of a system: infinite sequences of states

atomic propositions: assertions / predicates on states e.g. turn = 0, at_NC_1

Kripke structure (2)

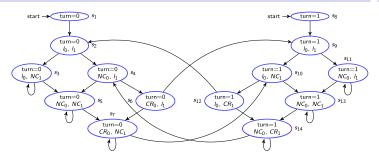
Definition

AP: set of atomic propositions. A Kripke structure $M = (S, S_0, R, L)$ over AP consists of

- \odot a set S of states,
- $oldsymbol{2}$ a set $S_0 \subseteq S$ of initial states,
- a transition relation $R \subseteq S \times S$; R is assumed to be total, i.e.: $\forall s \in S \exists s' \in S : R(s, s')$,
- **(a)** a labelling function $L: S \to 2^{AP}$; L gives the set of propositions which hold in a state

 Prof. Dr. Helke Wehrheim
 Model Checking
 WS 18/19
 45/423
 Prof. Dr. Helke Wehrheim
 Model Checking
 WS 18/19
 46/423

Our example



$$S = \{s_1, \dots, s_{14}\}, S_0 = \{s_1, s_8\}$$

 $(s_1, s_2) \in R, (s_{12}, s_2) \in R, \dots$
 $L: s_2 \mapsto \{turn = 0, at_l_0, at_l_1\}, \dots$

Prof. Dr. Heike Wehrheim

Model Checking

WS 18/19 47 / 423 Prof. Dr. Heike Wehrheim

Path

Definition

A path of a Kripke structure M starting at a state s is an infinite sequence $\pi = s_0 s_1 s_2 \dots$ such that $s_0 = s$ and $R(s_i, s_{i+1})$ holds for all $i \geq 0$.

Example:

$$\pi_1 = s_1 s_2 s_3 s_5 s_7 s_{10} s_{12} s_2 s_3 s_5 \dots$$
 path from s_1

$$\pi_2 = s_3 s_3 s_3 s_3 \dots$$
 path from s_3

WS 18/19 48 / 423

Modelling

Models either given as

- Kripke structures (low-level specification)
- in higher-level languages

models written in high-level languages are translated to Kripke structures

Promela and Spin

Promela (PROcess MEta LAnguage)

- (C-like) modelling language used to describe concurrent systems, e.g.
 - telecommunication protocols
 - multithreaded programs that communicate via
 - shared variables
 - message passing

Spin (Simple Promela INterpreter)

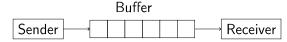
- analysis of Promela programs
- Gerard Holzmann, 1970s, Bell Labs

Prof. Dr. Heike Wehrheim WS 18/19 50 / 423

Promela

Communication between processes:

asychronous



- synchronous
 - sender and receiver wait until both are ready for the communication (rendezvous, handshake) special case of asynchronous: length of buffer 0
- shared variables

Promela (2)

A Promela program consists of

- type declarations
- variable declarations
- channel declarations
- process declarations
- an init process

Variables and channels are *global* or *local* to processes.

Prof. Dr. Heike Wehrheim

Model Checking

WS 18/19 51 / 423 Prof. Dr. Heike Wehrheim

Model Checking

WS 18/19 52 / 423

Promela example

Promela program for MUTEX

```
bit turn;
                                /* global variable */
proctype AO()
                               /* busy waiting */
         :: turn == 0 -> break
         :: else -> skip
         od;
   CR_0: turn = 1;
         goto NC_0
```

Process A1 similar (exchange 0 and 1)

Prof. Dr. Heike Wehrheim

Model Checking

Variables and Types

Types:

- Basic types for integers/boolean: bit (1), bool(1), byte(8), short(16), int(32) short s; bool flag; bit turn;
- Arrays bool req[2]; bit flags[4]; indices starting at 0
- Records typedef Record { short f; byte g; } dot notation for fields: Record r; r.f = ...;
- Constants #define N 4, #define free (in < out)

Prof. Dr. Heike Wehrheim

Model Checking

WS 18/19 54 / 423

Processes

Declaration:

body defines the behaviour of the process

this declaration defines a process, but does not execute it

Prof. Dr. Heike Wehrheim

Model Checking

WS 18/19 55 / 423

Execution of processes

Two options:

```
• call it from init:
init { ... run <name>(<actual para>); ...}
```

declare it active
 active proctype A() { ... }
 if A has formal parameters, they are all initialised to
 0

```
Example (for MUTEX):
    init {
        run A0(); run A1();
}
```

rof. Dr. Heike Wehrheim

Model Checking

WS 18/19 56 / 423

Shared variables

Processes may share variables

```
int number = 0;
active proctype P() {
   int x = 1;
   number = number + x;
   printf("number in P = %d",number);
}
active proctype Q() {
   number = number * 2;
   printf("number in Q = %d",number);
}
```

Value of number at end?

Prof. Dr. Heike Wehrheim Mod

Communication (I)

```
Channel declarations:
  chan <name>=[<len>] of {<type1>, ..., <typen>}
  e.g.
    chan qname = [16] of {short} (asynchronous)
    chan port = [0] of {byte} (synchronous)
```

Enumerations for defining types of messages
 mtype = {ack,err,accept}
 chan AtoB = [2] of {mtype,byte}

WS 18/19 57 / 423 Prof. Dr. Heike Wehrheim

Model Checking

WS 18/19 58 / 423

Communication(II)

Example:

```
chan c = [1] of {int,int}
c!x,y values of x and y send to channel c
c?u,v values of channel received and put into u and
c?u,4 restricts second value: only receive if it is 4
```

Full/Empty channels

Channels: FIFO

if channel is empty receiver has to wait

if channel is full

- sender has to wait

- message is lost

(option of Spin:

full queue blocks new msgs/loses new msgs)

Prof. Dr. Heike Wehrheim

Model Checking

WS 18/19 59/423 Prof. Dr. Heike Wehrheim

Model Checking

WS 18/19 60 / 423

Example (1)

Prof. Dr. Heike Wehrheim

```
chan c = [0] of \{int\};
proctype A()
    int x = 0;
    c!x
proctype B()
    int y = 1;
    c?y
init {
   run A(); run B()
```

Example (2)

```
chan b = [0] of \{bit\};
 chan c = [0] of \{bit\};
 proctype A () {
     bit x;
     b!true;
     c?x
 }
proctype B () {
     bit y;
     c!false;
     b?y;
 init {
     run A(); run B();
```

WS 18/19 61 / 423 Prof. Dr. Heike Wehrheim

WS 18/19 62 / 423

Control structures (I)

```
Sequential composition:
```

```
; or ->
```

Labels and jumps:

Empty statement:

skip

Prof. Dr. Heike Wehrheim

Model Checking

WS 18/19 63 / 423

Control structures (II)

Branching:

```
if
:: B1 -> S1
....
:: Bn -> Sn
:: else -> Sn+1
fi
```

nondeterministic choice of a statement S_i for which the guard B_i holds

no B_i true: else no else: wait

Prof. Dr. Heike Wehrheim

Model Checking

WS 18/19 64 / 423

Control structures (III)

Iteration:

Prof. Dr. Heike Wehrheim

```
do
:: B1 -> S1
....
:: Bn -> Sn
:: else -> Sn+1
od
```

similar to if, but repeated after a branch has been taken break exits the loop

A semaphor

Some useful functions

Functions on channels

- nempty(ch) tests whether the channel ch is non-empty
- empty(ch) tests whether the channel ch is empty
- nfull(ch)
 tests whether the channel ch is not full
- full(ch)
 tests whether the channel ch is full

More on Promela at

http://spinroot.com/spin/Man/Manual.html

Prof. Dr. Heike Wehrheim

Model Checking

WS 18/19 67 / 423

Semantics (I)

Informally:

- a Promela program corresponds to a Kripke structure
 - states: values of variables + program counters + contents of channels
 - transitions: state changes induced by execution of statements
 - initial state: determined by init + default initialisations of variables
 - labelling with atomic propositions according to states

Prof. Dr. Heike Wehrheim

Model Checkin

WS 18/19 68 / 423

Semantics (II)

Kripke structure has to be finite for verification, thus

- no dynamic data structures (lists etc.)
- no unbounded channels
- no unbounded processes
- no unbounded (e.g. recursive) process creation

Semantics (III)

Interleaving semantics:

- Promela processes execute concurrently
- Non-deterministic scheduling of processes
- Processes are interleaved, i.e. statements of different processes do not occur at the same time (except handshake communication)
- all statements are atomic

 Prof. Dr. Heike Wehrheim
 Model Checking
 WS 18/19
 69/423
 Prof. Dr. Heike Wehrheim
 Model Checking
 WS 18/19
 70/423

Use of SPIN

Spin consists of the program spin itself and GUI xspin/ispin

Components:

- Syntax check
- Simulation
- Verification

Simulation:

- random (non-deterministic choice of next statement)
- guided (along counter example generated by verifier)
- interactive (next step chosen by user)

http://spinroot.com/spin/Man/GettingStarted.html

Learned

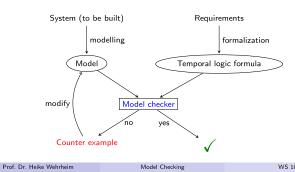
A language for modelling reactive systems: Promela A semantic model for the language: Kripke structure

 Prof. Dr. Heike Wehrheim
 Model Checking
 WS 18/19
 71/423
 Prof. Dr. Heike Wehrheim
 Model Checking
 WS 18/19
 72/423

Learned

A language for modelling reactive systems: Promela A semantic model for the language: Kripke structure

The "big picture" again:



Part II

LTL Model Checking

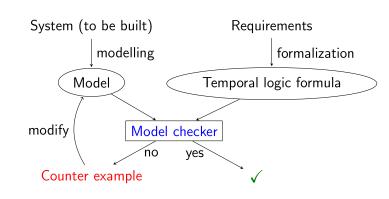
Prof. Dr. Heike Wehrheim Model Checking WS 18/19 73 / 423

The big picture

- LTL Syntax and Semantics
- 4 Verification with SPIN

Prof. Dr. Heike Wehrheim

Automata-Based LTL Model Checking



Model Checking

WS 18/19 75 / 423

In this chapter ...

Learn about:

- a temporal logic (LTL) syntax
- semantics of LTL interpretation on Kripke structures what does $M \models \varphi$ mean ?
- examples for the specification of requirements in LTL
- expressiveness of LTL

LTL

WS 18/19 74 / 423 Prof. Dr. Heike Wehrheim

(P)LTL - Propositional linear-time temporal logic

Basis:

atomic propositions

(assertions/predicates on states, also called state formulae)

additionally:

boolean connectives: \vee, \wedge, \neg

temporal operators: always, sometimes, tomorrow

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 76/423 Prof. Dr. Heike Wehrheim Model Checking WS 18/19 77/423

LTL - Syntax

In addition ..

Definition

AP a set of atomic propositions. The set of LTL-formulae over AP is inductively defined as follows

- $p \in AP$ is an LTL formula,
- if φ is an LTL formula, so is $\neg \varphi$,
- if φ, ψ are LTL formulae, so is $\varphi \vee \psi$,
- if φ is an LTL formula, so are $X \varphi, G \varphi, F \varphi$,
- if φ, ψ are LTL formulae, so is $\varphi \cup \psi$.

A formula without U, G, X, F is a state formula.

Derived boolean connectives

$$\begin{array}{lll} \textit{true} & := & p \vee \neg p \\ \textit{false} & := & \neg \textit{true} \\ \varphi \wedge \psi & := & \neg (\neg \varphi \vee \neg \psi) \\ \varphi \Rightarrow \psi & := & \neg \varphi \vee \psi \\ \varphi \Leftrightarrow \psi & := & (\varphi \Rightarrow \psi) \wedge (\psi \Rightarrow \varphi) \end{array}$$

Prof. Dr. Heike Wehrheim

Model Checking

WS 18/19 78 / 423 Prof. Dr. Heike Wehrheim

WS 18/19 79 / 423

Semantics: informally

Meaning of temporal operators

• *X* (next)

 $X \varphi$: φ holds in the next state

• G (globally, always)

 $G \varphi$: φ holds always

• F (eventually, finally)

 $F \varphi$: φ holds sometimes in the future

U (until)

 $\varphi \ U \ \psi$: φ holds until ψ holds (and ψ will eventually hold)

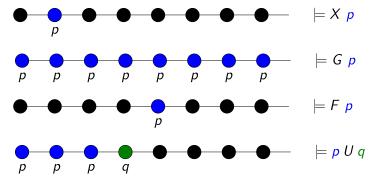
Examples of formulae: let $AP = \{x = 1, x < 2, x \ge 3\}$ $X (x = 1), \neg (x < 2), (x < 2) U (x \ge 3),$

 $F(x < 2) \lor G(x \ge 3)$

WS 18/19 80 / 423 Prof. Dr. Heike Wehrheim

Semantics: graphically

Formulae are interpreted on paths of Kripke structures



Semantics: formal

Given Kripke structure M, look at all paths of M

Definition

Let M be a Kripke structure and φ an LTL formula. $M \models \varphi$ iff $\pi \models \varphi$ for all paths π of M, which start in the initial state.

some notation:

$$\pi = s_0 s_1 s_2 \dots$$
 a path.
 $\pi^i = s_i s_{i+1} s_{i+2} \dots$ is the i-suffix of π

Semantics: formal (2)

Definition

Let $\pi = s_0 s_1 s_2 \dots$ a path, φ an LTL formula. $\pi \models \varphi$ is inductively defined as follows.

- $\pi \models p, p \in AP$ iff p holds in s_0 (i.e. $p \in L(s_0)$),
- $\pi \models \neg \varphi$ iff not $\pi \models \varphi$,
- $\pi \models \varphi \lor \psi$ iff $\pi \models \varphi$ or $\pi \models \psi$,
- $\pi \models X \varphi \text{ iff } \pi^1 \models \varphi$,
- $\pi \models G \varphi \text{ iff } \forall i \geq 0 : \pi^i \models \varphi$,
- $\pi \models F \varphi \text{ iff } \exists j \geq 0 : \pi^j \models \varphi$,
- $\pi \models \varphi \ U \ \psi \ \text{iff} \ \exists \ k \geq 0 : \pi^k \models \psi \ \text{and} \ \forall j, 0 \leq j < k, \pi^j \models \varphi.$

Prof. Dr. Heike Wehrheim

Model Checking

S 18/19 82 / 4

Prof. Dr. Heike Wehrheim

Model Checking

MIC 10/10 02 / 400

Examples

on the blackboard