© Modelling

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 43 /423

Kripke structure (1)

Kripke structures model

@ states of a system =& valuation of variables +
program counters
(snapshot at some moment during execution)

@ transitions: state changes

runs/computations of a system:
infinite sequences of states

atomic propositions: assertions / predicates on states
e.g. turn =0, at_ NG

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 45 /423

In this chapter ...

Learn about:

@ Kripke structures
@ formal model of a system
@ used for defining M = ¢
@ model checking algorithms operate on Kripke structures
(and other models)

@ Promela (language of SPIN)

Models written in higher-level languages (e.g. Promela)
can be translated to Kripke structures

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 44 /423

Kripke structure (2)

AP: set of atomic propositions. A Kripke structure
M = (S, So, R, L) over AP consists of
@ aset S of states,
@ aset Sy C S of initial states,
© a transition relation RC S x S;
R is assumed to be total, i.e.:
VseSds'e€S: R(s,s),
@ a labelling function L : S — 247
L gives the set of propositions which hold in a state

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 46 /423

Our example

S = {51» e ,514}, So = {51758}
(51752) € R? (512752) € R7 s
L:s+— {turn =0, at_l, at,ll}, -

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 47 /423

Modelling

Models either given as
@ Kripke structures
(low-level specification) or
@ in higher-level languages

models written in high-level languages are translated to
Kripke structures

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 49 /423

Path

Definition

A path of a Kripke structure M starting at a state s is an
infinite sequence ™ = 5y55; . . . such that s; = s and
R(si, si+1) holds for all i > 0.

Example:

T = S15)53555751051255355 . . . path from s;

Ty = $3535353 ... path from s3

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 48 /423

Promela and Spin

Promela (PROcess MEta LAnguage)
@ (C-like) modelling language used to describe
concurrent systems, e.g.

@ telecommunication protocols

@ multithreaded programs that communicate via
- shared variables
- message passing

Spin (Simple Promela INterpreter)
@ analysis of Promela programs
@ Gerard Holzmann, 1970s, Bell Labs

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 50/ 423

Promela

Communication between processes:
@ asychronous
Buffer

w—'{ \ \ \ \ \ }—'{Receiver

@ synchronous
sender and receiver wait until both are ready for the
communication (rendezvous, handshake)
special case of asynchronous: length of buffer 0

@ shared variables

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 51/423

Promela example

Promela program for MUTEX

bit turn; /* global variable */
proctype A0Q)
{
NC_0: do /* busy waiting */
11 turn == 0 -> break
: else —-> skip
od;

CR_O: turn = 1;
goto NC_O

}

Process Al similar (exchange 0 and 1)

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 53/423

Promela (2)

A Promela program consists of

type declarations

variable declarations
channel declarations
process declarations

an init process

Variables and channels are global or local to processes.

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 52/423

Variables and Types

Types:
@ Basic types for integers/boolean: bit (1), bool(1),
byte(8), short(16), int(32)
bool flag; bit turn;
@ Arrays
bool req[2];
indices starting at 0

short s;

bit flags[4];

@ Records
typedef Record { short f; byte g; }
dot notation for fields: Record r; r.f = ...;

@ Constants
#define N 4,

Prof. Dr. Heike Wehrheim

#define free (in < out)

Model Checking WS 18/19 54 /423

Processes

Declaration:

proctype <name> (<parameters>)

{
< body>

body defines the behaviour of the process

this declaration defines a process, but does not execute it

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 55 /423

Shared variables

Processes may share variables
int number = O;

active proctype P() {
int x = 1;
number = number + Xx;
printf ("number in P = %d",number) ;

3

active proctype Q() {
number = number * 2;
printf ("number in Q = %d",number) ;

3

Value of number at end?

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 57 /423

Execution of processes

Two options:

@ call it from init:

init { ... run <name>(<actual para>); ...}
@ declare it active
active proctype AQ) { ... }

if A has formal parameters, they are all initialised to
0

Example (for MUTEX):
init {
run AOQ); run A1Q);
X

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 56 /423

Communication (1)

Channel declarations:

chan <name>=[<len>] of {<typel>, ...,<typen>}
e.g.
chan gname = [16] of {short} (asynchronous)
chan port = [0] of {byte} (synchronous)

Enumerations for defining types of messages
mtype = {ack,err,accept}
chan AtoB = [2] of {mtype,byte}

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 58 /423

Communication(ll)

Example:

chan ¢ = [1] of {int,int}

c!x,y values of x and y send to channel ¢

c?u,v values of channel received and put into u and
v

c?u,4 restricts second value: only receive if it is 4

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 59 /423

Example (1)
chan ¢ = [0] of {int};

proctype AQ)

{
int x = 0;
clx

}

proctype B(O)

{
int y = 1;
c?y

}

init {

run A(Q); run BQO)
}

Prof. Dr. Heike Wehrheim Model Checking WS 18/19

61/423

Full/Empty channels

Channels: FIFO

if channel is empty receiver has to wait

if channel is full

- sender has to wait
or

- message is lost

(option of Spin:
full queue blocks new msgs/loses new msgs)

Prof. Dr. Heike Wehrheim Model Checking WS 18/19

Example (2)

[0] of {bit};
[0] of {bit};

chan b =
chan c

proctype A O {

bit x;
b!true;
c?x

}

proctype B () {

bit y;
cl!false;
b?y;

}

init {

run A(); run BQO);

Prof. Dr. Heike Wehrheim Model Checking WS 18/19

60 /423

62/423

Control structures (1)

Sequential composition:
; or >

Labels and jumps:
loop: turn = 1;
goto loop;
Empty statement:
skip

Prof. Dr. Heike Wehrheim Model Checking WS 18/19

Control structures (III)

[teration:
do
B1 -> S1
:: Bn -> Sn
else -> Sn+1
od

similar to if, but repeated after a branch has been taken

break exits the loop

Prof. Dr. Heike Wehrheim Model Checking WS 18/19

Control structures (I1)

Branching:
if
B1 -> S1
Bn -> Sn
else -> Sn+1
fi

nondeterministic choice of a statement S; for which the

guard B; holds

no B; true: else
no else: wait

Prof. Dr. Heike Wehrheim

A semaphor

#define p O
#define v 1
chan sema = [0] of {bit};

proctype semaphore() {
byte count = 1;
end_sema: do
:: (count == 1) -> semal!p; count =
:: (count == 0) -> sema?v; count
od

[}
= O

¥
proctype user() {
end_user: do
:: sema?p; /* critical region */
: sema!v; /* noncritical region */
od
¥
init { run semaphore(); run user() }

Prof. Dr. Heike Wehrheim Model Checking WS 18/19

Model Checking WS 18/19

64423

66 /423

Some useful functions

Functions on channels
@ nempty(ch)
tests whether the channel ch is non-empty
e empty(ch)
tests whether the channel ch is empty
@ nfull(ch)
tests whether the channel ch is not full
@ full(ch)
tests whether the channel ch is full

More on Promela at
http://spinroot.com/spin/Man/Manual.html

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 67 /423

Semantics (II)

Kripke structure has to be finite for verification, thus
@ no dynamic data structures (lists etc.)
@ no unbounded channels
@ no unbounded processes
@ no unbounded (e.g. recursive) process creation

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 69 /423

Semantics (I)

Informally:
a Promela program corresponds to a Kripke structure

@ states: values of variables 4+ program counters +
contents of channels

@ transitions: state changes induced by execution of
statements

@ initial state: determined by init + default
initialisations of variables

@ labelling with atomic propositions according to
states

Prof. Dr. Heike Wehrheim Model Checking WS 18/19

Semantics (lII)

Interleaving semantics:
@ Promela processes execute concurrently
@ Non-deterministic scheduling of processes

@ Processes are interleaved, i.e. statements of
different processes do not occur at the same time
(except handshake communication)

@ all statements are atomic

Prof. Dr. Heike Wehrheim Model Checking WS 18/19

68 /423

70/ 423

Use of SPIN Learned

A language for modelling reactive systems: Promela

Spin consists of the program spin itself and GUI
A semantic model for the language: Kripke structure

xspin/ispin
Components:
@ Syntax check
@ Simulation
@ Verification
Simulation:
- random (non-deterministic choice of next statement)
- guided (along counter example generated by verifier)
- interactive (next step chosen by user)
http://spinroot.com/spin/Man/GettingStarted.htm:

WS 18/19 71/423 Prof. Dr. Heike Wehrheim Model Checking WS 18/19 72/423

Prof. Dr. Heike Wehrheim Model Checking

Learned

A language for modelling reactive systems: Promela
A semantic model for the language: Kripke structure Pa rt ||

The "big picture” again:

System (to be built) Requirements LT L M Od el C h eC ki n g

Jmodelling lformalization
@ Temporal logic formula
modify Model checker
no yes
Counter example \/

WS 18/19 72/423 Prof. Dr. Heike Wehrheim Model Checking WS 18/19 73/423

Prof. Dr. Heike Wehrheim Model Checking

© LTL - Syntax and Semantics

Prof. Dr. Heike Wehrheim Model Checking WS 18/19

In this chapter ...

Learn about:

@ a temporal logic (LTL)
syntax

@ semantics of LTL
interpretation on Kripke structures
what does M = ¢ mean ?

@ examples for the specification of requirements in
LTL

@ expressiveness of LTL

Prof. Dr. Heike Wehrheim Model Checking WS 18/19

The big picture

System (to be built) Requirements

J modelling l formalization

modify

Temporal logic formula

‘ Model checker ‘
no

yes

Counter example v

74 /423 Prof. Dr. Heike Wehrheim Model Checking WS 18/19 75/423

LTL

(P)LTL - Propositional linear-time temporal logic

Basis:
atomic propositions
(assertions/predicates on states,
also called state formulae)

additionally:
boolean connectives: V, A, —

temporal operators: always, sometimes, tomorrow

76 /423 Prof. Dr. Heike Wehrheim Model Checking WS 18/19 77/423

LTL - Syntax

AP a set of atomic propositions. The set of
LTL-formulae over AP is inductively defined as follows

@ p € AP is an LTL formula,

if @ is an LTL formula, so is =,

if 1 are LTL formulae, so is ¢ V ¥,

if o is an LTL formula, so are X ¢, G ¢, F ¢,

]
o
o
@ if p, 1 are LTL formulae, so is ¢ U 1.

A formula without U, G , X , F is a state formula.

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 78 /423

Semantics: informally

Meaning of temporal operators
e X (next)
X 1 © holds in the next state
® G (globally, always)
G ¢: ¢ holds always
e £ (eventually, finally)
F ¢: ¢ holds sometimes in the future
e U (until)
@ U1p: o holds until ¥ holds (and ¢ will eventually
hold)
Examples of formulae: let AP = {x =1,x < 2,x > 3}
X (x=1),7(x<2),(x<2)U(x>3),
F(x<2)VG (x>23)

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 80/423

In addition ..

Derived boolean connectives

true = pV -—p
false = —true
PAY = (mp V)
p=v = 2pVy
peP = (p=P)A Q=)

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 79/423

Semantics: graphically

Formulae are interpreted on paths of Kripke structures

o 0 0 06 06 06 06 0 X,
p
o 0 0 06 0 0 0 O G,
p P P P P P P P
o 0 0 06 06 06 0 0 -~/
p
o 0 0 0 0 0 0 /U

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 81/423

Semantics: formal

Given Kripke structure M, look at all paths of M

Definition

Let M be a Kripke structure and ¢ an LTL formula.
M = ¢ iff 7 |= ¢ for all paths 7 of M, which start in the
initial state.

some notation:
T = 5515 ... a path.

' = S5;Sj11Sj12 - . . is the i-suffix of 7

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 82/423

Examples

on the blackboard

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 84 /423

Semantics: formal (2)

Let 7 = sp515; ... a path, ¢ an LTL formula. 7 |= ¢ is
inductively defined as follows.

° 7 =p,p e AP iff p holds in s (i.e. p € L(sp)),
@ 7 = -y iff not 7 = o,
eTkEpVyiffrEporm EY,
ok X piffrl = o,
oTEGIiffYi>0:7 |,
oeTEFpiff3j>0:7 o,
o Tk Uiff 3k>0: 7 = ¢ and
Vj,0<j<km e

Model Checking

Prof. Dr. Heike Wehrheim WS 18/19 83/423

