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Kripke structure (1)

Kripke structures model

@ states of a system =& valuation of variables +
program counters
(snapshot at some moment during execution)

@ transitions: state changes

runs/computations of a system:
infinite sequences of states

atomic propositions: assertions / predicates on states
e.g. turn =0, at_ NG
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In this chapter ...

Learn about:

@ Kripke structures
@ formal model of a system
@ used for defining M = ¢
@ model checking algorithms operate on Kripke structures
(and other models)

@ Promela (language of SPIN)

Models written in higher-level languages (e.g. Promela)
can be translated to Kripke structures
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Kripke structure (2)

AP: set of atomic propositions. A Kripke structure
M = (S, So, R, L) over AP consists of
@ aset S of states,
@ aset Sy C S of initial states,
© a transition relation RC S x S;
R is assumed to be total, i.e.:
VseSds'e€S: R(s,s),
@ a labelling function L : S — 247
L gives the set of propositions which hold in a state
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Our example

S = {51» e ,514}, So = {51758}
(51752) € R? (512752) € R7 s
L:s+— {turn =0, at_l, at,ll}, -
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Modelling

Models either given as
@ Kripke structures
(low-level specification) or
@ in higher-level languages

models written in high-level languages are translated to
Kripke structures
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Path

Definition

A path of a Kripke structure M starting at a state s is an
infinite sequence ™ = 5y55; . . . such that s; = s and
R(si, si+1) holds for all i > 0.

Example:

T = S15)53555751051255355 . . . path from s;

Ty = $3535353 ... path from s3
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Promela and Spin

Promela (PROcess MEta LAnguage)
@ (C-like) modelling language used to describe
concurrent systems, e.g.

@ telecommunication protocols

@ multithreaded programs that communicate via
- shared variables
- message passing

Spin (Simple Promela INterpreter)
@ analysis of Promela programs
@ Gerard Holzmann, 1970s, Bell Labs
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Promela

Communication between processes:
@ asychronous
Buffer

w—'{ \ \ \ \ \ }—'{Receiver

@ synchronous
sender and receiver wait until both are ready for the
communication (rendezvous, handshake)
special case of asynchronous: length of buffer 0

@ shared variables
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Promela example

Promela program for MUTEX

bit turn; /* global variable */
proctype A0Q)
{
NC_0: do /* busy waiting */
11 turn == 0 -> break
: else —-> skip
od;

CR_O: turn = 1;
goto NC_O

}

Process Al similar (exchange 0 and 1)
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Promela (2)

A Promela program consists of

type declarations

variable declarations
channel declarations
process declarations

an init process

Variables and channels are global or local to processes.
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Variables and Types

Types:
@ Basic types for integers/boolean: bit (1), bool(1),
byte(8), short(16), int(32)
bool flag; bit turn;
@ Arrays
bool req[2];
indices starting at 0

short s;

bit flags[4];

@ Records
typedef Record { short f; byte g; }
dot notation for fields: Record r; r.f = ...;

@ Constants
#define N 4,
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#define free (in < out)
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Processes

Declaration:

proctype <name> (<parameters>)

{
< body>

body defines the behaviour of the process

this declaration defines a process, but does not execute it
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Shared variables

Processes may share variables
int number = O;

active proctype P() {
int x = 1;
number = number + Xx;
printf ("number in P = %d",number) ;

3

active proctype Q() {
number = number * 2;
printf ("number in Q = %d",number) ;

3

Value of number at end?
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Execution of processes

Two options:

@ call it from init:

init { ... run <name>(<actual para>); ...}
@ declare it active
active proctype AQ) { ... }

if A has formal parameters, they are all initialised to
0

Example (for MUTEX):
init {
run AOQ); run A1Q);
X
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Communication (1)

Channel declarations:

chan <name>=[<len>] of {<typel>, ...,<typen>}
e.g.
chan gname = [16] of {short} (asynchronous)
chan port = [0] of {byte} (synchronous)

Enumerations for defining types of messages
mtype = {ack,err,accept}
chan AtoB = [2] of {mtype,byte}
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Communication(ll)

Example:

chan ¢ = [1] of {int,int}

c!x,y values of x and y send to channel ¢

c?u,v values of channel received and put into u and
v

c?u,4 restricts second value: only receive if it is 4
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Example (1)
chan ¢ = [0] of {int};

proctype AQ)

{
int x = 0;
clx

}

proctype B(O)

{
int y = 1;
c?y

}

init {

run A(Q); run BQO)
}
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Full/Empty channels

Channels: FIFO

if channel is empty receiver has to wait

if channel is full

- sender has to wait
or

- message is lost

(option of Spin:
full queue blocks new msgs/loses new msgs)
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Example (2)

[0] of {bit};
[0] of {bit};

chan b =
chan c

proctype A O {

bit x;
b!true;
c?x

}

proctype B () {

bit y;
cl!false;
b?y;

}

init {

run A(); run BQO);
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Control structures (1)

Sequential composition:
; or >

Labels and jumps:
loop: turn = 1;
goto loop;
Empty statement:
skip
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Control structures (III)

[teration:
do
B1 -> S1
:: Bn -> Sn
else -> Sn+1
od

similar to if, but repeated after a branch has been taken

break exits the loop
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Control structures (I1)

Branching:
if
B1 -> S1
Bn -> Sn
else -> Sn+1
fi

nondeterministic choice of a statement S; for which the

guard B; holds

no B; true: else
no else: wait
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A semaphor

#define p O
#define v 1
chan sema = [0] of {bit};

proctype semaphore() {
byte count = 1;
end_sema: do
:: (count == 1) -> semal!p; count =
:: (count == 0) -> sema?v; count
od

[}
= O

¥
proctype user() {
end_user: do
:: sema?p; /* critical region */
: sema!v; /* noncritical region */
od
¥
init { run semaphore(); run user() }
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Some useful functions

Functions on channels
@ nempty(ch)
tests whether the channel ch is non-empty
e empty(ch)
tests whether the channel ch is empty
@ nfull(ch)
tests whether the channel ch is not full
@ full(ch)
tests whether the channel ch is full

More on Promela at
http://spinroot.com/spin/Man/Manual.html
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Semantics (II)

Kripke structure has to be finite for verification, thus
@ no dynamic data structures (lists etc.)
@ no unbounded channels
@ no unbounded processes
@ no unbounded (e.g. recursive) process creation
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Semantics (I)

Informally:
a Promela program corresponds to a Kripke structure

@ states: values of variables 4+ program counters +
contents of channels

@ transitions: state changes induced by execution of
statements

@ initial state: determined by init + default
initialisations of variables

@ labelling with atomic propositions according to
states
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Semantics (lII)

Interleaving semantics:
@ Promela processes execute concurrently
@ Non-deterministic scheduling of processes

@ Processes are interleaved, i.e. statements of
different processes do not occur at the same time
(except handshake communication)

@ all statements are atomic
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Use of SPIN Learned

A language for modelling reactive systems: Promela

Spin consists of the program spin itself and GUI
A semantic model for the language: Kripke structure

xspin/ispin
Components:
@ Syntax check
@ Simulation
@ Verification
Simulation:
- random (non-deterministic choice of next statement)
- guided (along counter example generated by verifier)
- interactive (next step chosen by user)
http://spinroot.com/spin/Man/GettingStarted.htm:
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Learned

A language for modelling reactive systems: Promela
A semantic model for the language: Kripke structure Pa rt ||

The "big picture” again:

System (to be built) Requirements LT L M Od el C h eC ki n g

Jmodelling lformalization
@ Temporal logic formula
modify Model checker
no yes
Counter example \/
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© LTL - Syntax and Semantics
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In this chapter ...

Learn about:

@ a temporal logic (LTL)
syntax

@ semantics of LTL
interpretation on Kripke structures
what does M = ¢ mean ?

@ examples for the specification of requirements in
LTL

@ expressiveness of LTL
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The big picture

System (to be built) Requirements

J modelling l formalization

modify

Temporal logic formula

‘ Model checker ‘
no

yes

Counter example v
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LTL

(P)LTL - Propositional linear-time temporal logic

Basis:
atomic propositions
(assertions/predicates on states,
also called state formulae)

additionally:
boolean connectives: V, A, —

temporal operators: always, sometimes, tomorrow
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LTL - Syntax

AP a set of atomic propositions. The set of
LTL-formulae over AP is inductively defined as follows

@ p € AP is an LTL formula,

if @ is an LTL formula, so is =,

if 1 are LTL formulae, so is ¢ V ¥,

if o is an LTL formula, so are X ¢, G ¢, F ¢,

]
o
o
@ if p, 1 are LTL formulae, so is ¢ U 1.

A formula without U, G , X , F is a state formula.
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Semantics: informally

Meaning of temporal operators
e X (next)
X 1 © holds in the next state
® G (globally, always)
G ¢: ¢ holds always
e £ (eventually, finally)
F ¢: ¢ holds sometimes in the future
e U (until)
@ U1p: o holds until ¥ holds (and ¢ will eventually
hold)
Examples of formulae: let AP = {x =1,x < 2,x > 3}
X (x=1),7(x<2),(x<2)U(x>3),
F(x<2)VG (x>23)
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In addition ..

Derived boolean connectives

true = pV -—p
false = —true
PAY = (mp V)
p=v = 2pVy
peP = (p=P)A Q=)
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Semantics: graphically

Formulae are interpreted on paths of Kripke structures

o 0 0 06 06 06 06 0 X,
p
o 0 0 06 0 0 0 O G,
p P P P P P P P
o 0 0 06 06 06 0 0 -~/
p
o 0 0 0 0 0 0 /U
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Semantics: formal

Given Kripke structure M, look at all paths of M

Definition

Let M be a Kripke structure and ¢ an LTL formula.
M = ¢ iff 7 |= ¢ for all paths 7 of M, which start in the
initial state.

some notation:
T = 5515 ... a path.

' = S5;Sj11Sj12 - . . is the i-suffix of 7
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Examples

on the blackboard
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Semantics: formal (2)

Let 7 = sp515; ... a path, ¢ an LTL formula. 7 |= ¢ is
inductively defined as follows.

° 7 =p,p e AP iff p holds in s (i.e. p € L(sp)),
@ 7 = -y iff not 7 = o,
eTkEpVyiffrEporm EY,
ok X piffrl = o,
oTEGIiffYi>0:7 |,
oeTEFpiff3j>0:7 o,
o Tk Uiff 3k>0: 7 = ¢ and
Vj,0<j<km e

Model Checking
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