Orga |

Model Checking Old exam regulations:
Wintersemester 2018/2019 @ area: software technology and informations systems

e 4 ECTS

@ modules: [11.1.1, 11.1.5

Prof. Dr. Heike Wehrheim .
New exam regulations:

@ Focus area: software engineering
WS 18/19 ® 6 ECTS

@ course is a module on its own

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 1/423 Prof. Dr. Heike Wehrheim Model Checking WS 18/19 2/423

Orga |l Orga Il

Depending on version, different requirements

@ old regulations:
@ all of the lecture part
@ oral examination
@ Lectures (approximately first half of term) e prerequisite for oral exam (Studienleistung):
o Lab part (second half) 70/30-rule: in 70% of the exercise sheets have 30% of
the total points
o Reading and summary Writing @ no lab, no reading & writing

@ new regulations:

@ as in old regulations (70/30-rule)
@ + 50% of lab exercises
@ -+ summary of 1 book chapter

Course consists of three parts:

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 3/423 Prof. Dr. Heike Wehrheim Model Checking WS 18/19 4/423

Orga IV Orga V

Heike Wehrheim
Office hours: by appointment
email: wehrheim@uni-paderborn.de
Lab part:
Lecture & Tutorial: @ starts approximately second half of term
@ Manuel Tows, mtoews@mail.uni-paderborn.de
Lecture: Tue, 9 - 11, 01.258 @ Wed, 14 - 16, 01.258
Wed, 9 - 11, 01.258
Tutorial: Jiirgen Konig, jkoenig@mail.upb.de
Wed, 14 - 16, 01.258

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 5/423 Prof. Dr. Heike Wehrheim Model Checking WS 18/19 6/423

Homework Reading

Homework assignments every week
o assignments y wee Books:

(until lecture part is over)
e E. Clarke, O. Grumberg, D. Peled: Model Checking,

@ first one on Friday in Panda MIT Press 1999
® solutions must be handed in via Panda e Ch. Baier, J.-P. Katoen: Principles of Model
@ submitted in groups of 2 - 4 students Checking, MIT Press, 2008.

@ exercises discussed during tutorial

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 7/423 Prof. Dr. Heike Wehrheim Model Checking WS 18/19 8/423

Other material

@ Slides (available after lecture in Panda)

@ examples, (mainly) on the board,
partly hand-out

Prof. Dr. Heike Wehrheim Model Checking

@ Introduction

Prof. Dr. Heike Wehrheim Model Checking

Part |

Basics

WS 18/19 9/423 Prof. Dr. Heike Wehrheim Model Checking WS 18/19

Motivation

Software everywhere in daily life:
@ mobile phones,
@ cars,
@ medical applications,
@ banking,
[I

The more software is used, the more drastic the
consequences of software failures

and
with an increasing complexity of the software it gets
harder to avoid software failures.

WS 18/19 11/423 Prof. Dr. Heike Wehrheim Model Checking WS 18/19

10/423

12/423

Why avoid failures? System development

Design processes, e.g. waterfall model (old)

Train accidents:

’ Requirements analysis ‘

Req. docu merN
System design

Design model

Implementation

Software

Montparnasse, 1895 Rasender Roland, 2004

Software

Today: software controls points, gates, signalling, ...
alntenance

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 13 /423 Prof. Dr. Heike Wehrheim Model Checking WS 18/19 14 /423

Validation - Testing Validation - Simulation

Correctness: System should meet requirements

Waterfall model: checked via testing Different option: simulation

Methods: Blackbox/Whitebox testing, test coverage simulate runs of the model (arbitrarily chosen)

Advantage:

- relatively easy (and cheap) advantage:

Disadvantage: - on the model, thus in early phase

- errors found late (better: incremental processes) disadvantage:
- often not systematic - only some runs inspected (similar to testing)
- incomplete used in hardware design

" Testing can only show the presence of errors, never
their absence.” (E. Dijkstra)

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 15 /423 Prof. Dr. Heike Wehrheim Model Checking WS 18/19 16 /423

Validation - Verification

Verification:

mathematical proof of the correctness of a
model /program with respect to the requirements

needs: formal description of model and requirements

— additional costs: more time, experts needed

drawback:
might be infeasible — combination with testing

Prof. Dr. Heike Wehrheim Model Checking WS 18/19

Recent bug (2014)

Intel Haswell processor

17/423

HSW136. Software Using Intel® TSX May Result in Unpredictable System
Behavior

Problem Under a complex set of internal timing conditions and system events, software using
the Intel TSX (Transactional Synchronization Extensions) instructions may result in
unpredictable system behavior.

Implication: This erratum may result in unpredictable system behavior.

Workaround: It is possible for the BIOS to contain a workaround for this erratum.

Status: For the steppings affected, see the Summary Table of Changes.

Prof. Dr. Heike Wehrheim Model Checking WS 18/19

19/423

Verification - why?

Consequences of incorrect software/hardware:

@ Danger to human lifes
airbag goes off without reason, trains collide, ...

@ High costs

@ Ariane 5: ~ 500 million dollars

overflow error in a conversion floating point to integer

@ Intel Pentium: = 500 million dollars
error in floating point division

Prof. Dr. Heike Wehrheim Model Checking WS 18/19

Verification - how?
A proof of correctness, how can this be achieved?
- depends on the type of system

transformational systems

Output
System i

Input

reactive systems

SENSOR

+
1

PERSON <HCL\
[]

Prof. Dr. Heike Wehrheim

— ACTOR

Model Checking WS 18/19

18/423

20/423

Transformational systems

Input . Output
System

Examples: compiler, sorting programs, book keeping

program is implementing a function from an input
(state) into an output (state)

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 21/423

Hoare Triple

Precondition - program - postcondition

{p}S{q}
"if p holds and we execute S then afterwards g holds”
Example: {y > 0}x := y{x >0}
in addition: proof of termination

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 22/423

Transformational systems

Input ———— Output
npd System et
Examples: compiler, sorting programs, book keeping

program is implementing a function from an input
(state) into an output (state)

requirements denotable by "Hoare Triples”

_— — postcondition

{r} S {q}

precondition —~
program
Prof. Dr. Heike Wehrheim

Model Checking WS 18/19 21/423

Verification of transf. systems

Deductive verification: axioms + proof rules

e.g. a rule for sequential composition

{ptSi{a} . {a}SAr}
{p}S1; So{r}

premise

conclusion

if the premises holds for the components, the conclusion
can be deduced for the sequential composition of
components

rules for all constructs of programs, including parallel
composition
= deductive verification

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 23/423

Deductive verification

Advantage:
@ complete (often)

@ verification of programs with infinite state space

Disadvantage:
@ tedious

@ proofs done by hand / with help of theorem prover
@ Hoare-style proofs not for reactive systems

Reactive systems (1)

SENSOR
1
1

PERSON ME\

Set of components, executing in parallel and

[J— AcTor

(however, deductive verification possible for reactive communicating with each other

systems as well)

Prof. Dr. Heike Wehrheim Model Checking

Reactive systems (2)

Characteristica:
@ parallelism, distribution
@ reactivity

@ interaction with an environment,
usually no termination

@ high complexity,
safety critical

Prof. Dr. Heike Wehrheim Model Checking

WS 18/19 24 /423 Prof. Dr. Heike Wehrheim Model Checking WS 18/19 25/423

Examples

Examples
@ embedded system (automotive sector)
@ telecommunication
@ elevator
requirements specify the behaviour of a system in time,
not its |/O behaviour
e.g. requirement on a communication protocol

"if process P sends a message it will not send an-
other message until it got an acknowledgement
from the receiver”

WS 18/19 26 /423 Prof. Dr. Heike Wehrheim Model Checking WS 18/19 27 /423

Specifying requirements

Example

Requirements on reactive systems specified in temporal

logic (TL)

Amir Pnueli

@ 1977: proposal of such a logic
@ 1996: Turing Award
" For seminal work introducing temporal logic into

computing science and for outstanding contributions

to program and system verification.”

Prof. Dr. Heike Wehrheim

Model Checking

WS 18/19

What's now verification?

Question (correctness):
does the model meet the requirements?

formally:

/ Requirement (in TL)

?

=

0

M
System model /

Prof. Dr. Heike Wehrheim Model Checking WS 18/19

The requirement on the communication protocol:

"if process P sends a message it will not send an-
other message until it got an acknowledgement
from the receiver”

= G (sndp(m) = (—sndy(nxt(m)) U rcvp(ack)))

globally/ K until

28 /423 Prof. Dr. Heike Wehrheim Model Checking WS 18/19 29/423

Verification

Proof of M |= ¢

@ Term model checking
"is the system a model of the formula”

@ in general undecidable: Theorem of Rice
@ beginning of 80th:
Clarke & Emerson, Quielle & Sifakis
model checking algorithm searches the whole state
space of systems
hence: state space needs to be finite

30/423 Prof. Dr. Heike Wehrheim Model Checking WS 18/19 31/423

Clarke, Emerson, Sifakis

Turing Award 2007

"For their role in developing Model-Checking
into a highly effective verification technology,
widely adopted in the hardware and software in-
dustries.”

Joseph Sifakis

Allen Emerson

Ed Clarke

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 32/423

Today

Research today:

® systems with large (or infinite state space)
@ software model checking (C, Java)

@ combination of different techniques:
deductive verification, constraint-solving, static
analysis, heuristic search, ...

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 34 /423

System (to be built)

Prof. Dr. Heike Wehrheim

And then?

@ implementation of these algorithms
— tools (model checker)
allow for a fully automatic correctness proof (for
certain classes of systems)

@ end of 80th, beginning 90th:
research: larger systems
efficient representation of state (BDDs)
reduction techniques

e '90, '00
industrial applications (in particular hardware)
research departments (IBM, Intel, Motorola,
Siemens, Microsoft)

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 33/423

Model checking — Big picture

Requirements

J modelling J formalization

Temporal logic formula

modify ’ Model checker‘

no vyes

Counter example v

Model Checking WS 18/19 35/423

What's needed ...

Formal description of models — M
Temporal logic formula — ¢

Def. of M |= ¢

Algorithms for checking M |= ¢
Tools implementing these algorithms

000000

Clever people being able to develop formal models
and write formulae

this course: 1, 2, 3, 4, 5,
at the end you belong to 6

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 36/423

First example (1)

Mutual exclusion of two processes

o : while true do h : while true do
NGy : wait (turn = 0); NG : wait (turn = 1);
CRy : turn :=1 CR; : turn:=0
od; od;
bo; h
I, li, CRo, .. .: labels, ||: parallel composition

NC: non-critical section, CR: critical section
(wait: busy waiting)
Prof. Dr. Heike Wehrheim

Model Checking WS 18/19 38/423

Success stories

Verification of the floating point unit of Pentium4 (2001)
one error found

Verification of a cache protocol in the IEEE-Futurebus—+
(1992)
several errors found

SLAM/ Static Driver Verifier (2000 - 2004)
verification of Windows-XP Drivers

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 37/423

First example (2)

Semantics: Kripke structure

@ describes state space
@ state: evaluation of variables 4+ program counter
@ transitions: state changes

plus atomic propositions (predicates on variables)
eg. turn =20

Prof. Dr. Heike Wehrheim Model Checking WS 18/19 39/423

A Kripke structure

WS 18/19

Prof. Dr. Heike Wehrheim Model Checking 40 /423

Requirements

@ Mutex: process 1 and 2 never both in their critical
section

G ﬁ(at,CRo A at,CRl) \/

safety property ("nothing bad happens”, Lamport)
© Progress: every process can always eventually enter
its critical section

G (F at_CR,), G (F at_CRy)

does not hold (only under additional fairness
assumption)
liveness property ("something good will happen”)

WS 18/19 41/423

Prof. Dr. Heike Wehrheim Model Checking

Requirements

@ Mutex: process 1 and 2 never both in their critical
section

G —|(at,CR0 VAN at,CRl) \/

safety property (" nothing bad happens”, Lamport)

Prof. Dr. Heike Wehrheim Model Checking WS 18/19

This course

We will learn something about
@ two temporal logics: LTL and CTL
LTL = linear time temporal logic
CTL = computation tree logic
@ model checking techniques
® a model checker: SPIN (for LTL)

small examples
- distributed algorithms
- kryptographic protocols

Prof. Dr. Heike Wehrheim Model Checking WS 18/19

41/423

42/423

