Paderborn, October 12th 2018 Due date: October 22th 2018

Model Checking

WS 2018

Assignment 1

Submission

Assignments must be submitted via PANDA.

!! Due date is Monday, 22th of October !!

EXERCISE 1 (10 Points) (First Order Logic):

Reiterate the concepts and rules of first order logic like quantifiers and predicates. Then solve the following exercises:

- a) Express the following natural sentences in first order logic using the predicates visits (x, y), wears (x, y)
 - Jenny wears a suit.
 - Jenny visits a bar.
 - If Jenny visits a construction site, Jenny wears a helmet.
 - Whenever Alex visits a LARP convention, he wears chain mail.
- b) Let the universe be $\mathbb{U}=\mathbb{N}$. All mathematical operators have their usual meaning. List for each formula if it is valid, satisfiable and which of the other formulas are a logical consequence of it.
 - $\bullet \ \forall x \exists a(x \cdot 3 = a)$
 - $\bullet \ \forall x(x \cdot 3 = a)$
 - $\forall x(x \cdot y > x^2 \Rightarrow y > x)$
 - $5 \cdot 3 = a$
 - $\bullet \exists a(x=a+1)$

EXERCISE 2 (Spin):

Try to install Spin as specified in the Spin Install Guide. SPIN will be needed in this assignment. The easiest way is using Linux or a VM running Linux.

EXERCISE 3 (6 Points) (Kripke Structures):

Recall the definition of a Kripke structures. Then solve the following exercises:

- a) Let $(\{s_0, s_1, s_2, s_3, s_4\}, \{s_0\}, \{(s_1, s_2), (s_2, s_3), (s_2, s_4), (s_4, s_1), (s_0, s_1), (s_0, s_3), (s_3, s_3)\}, L)$ be a Kripke structure where $L(s_i) = CR_i$, $0 \le i \le 4$, draw this Kripke structure.
- b) Give 2 paths of this structure.
- c) Take a look at Figure 1, write down the Kripke structure in tuple form.
- d) Give a path for this Kripke structure.

Figure 1: A Kripke structure

EXERCISE 4 (14 Points) (Promela):

Recall the properties and structure of Promela. Then solve the following exercises:

a) Give the possibly values (implicitly) of y at the end of the execution for all possible interleavings.

```
int x = 0;
int y = 0;
int z = 0;
byte b = 0;
proctype One(){
x = 3;
z = 2;
b = 1;
}
proctype Two(){
:: (x == 3) \rightarrow y = y + 1;
:: (z == 0) \rightarrow y = 5;
:: (b == 1) -> break;
od
}
init { run One(); run Two() }
```

- b) Consider the dining philosophers problem:
 - Three silent philosophers sit around a circular table. On the table is a bowl of rice.
 - Between each pair of adjacent philopophers is one chopstick.
 - Each philosopher either eats or thinks.
 - In order to eat, a philosopher must acquire both chopsticks. When finished eating, a philosopher puts the chopsticks back.

Implement the problem in Promela, modeling each philosopher as a process. Use the greedy solution to the problem, in which each philosophers tries to take available chopsticks whenever he is hungry.

This solution must be submitted in a text file.

c) Run an interactive simulation in Spin. Try to find a run that leads to no philosopher getting to eat, attach a screenshot of that run.