
µDROID: An Energy-Aware Mutation Testing
Framework for Android

A report as part of the seminar Software testing

Stefan Schott

University Paderborn, Institute for Computer Science,
33098 Paderborn, Germany
sschott@mail.uni-paderborn.de

Abstract. Nowadays mobile apps are becoming more and more popu-
lar. With this increase in popularity and energy being a limited resource
on mobile devices the demand for developers to produce energy efficient
applications rises steadily. Currently there are no specialized energy test-
ing frameworks available, therefore developers purely rely on functional
correctness tests. These tests are not necessarily suited to uncover energy
defects in an application.
µDROID provides an energy-aware mutation testing framework which is
able to evaluate a test suite’s ability to uncover energy defects. µDROID
provides a set of 50 different energy anti-patterns to test on. Furthermore
µDROID can be applied to a test suite completely automatic and assign
it a score which represents its ability to uncover energy defects. Besides
that µDROID can also help in revealing missing test cases.

Keywords: Android, Energy Testing, Mutation Testing, Software Testing

1 Introduction

Mobile apps are becoming more and more popular these days. Even most desk-
top programs now provide a mobile version. Since energy is a limited resource
on mobile devices the energy efficiency of mobile apps becomes more and more
of a concern. Recent surveys [3] show that for 59% of participants (n=782) the
most wanted feature for their next smartphone is a longer battery runtime.
Because of a lack of tools for energy testing for Android applications, currently
functional correctness test suites are used to uncover energy-related defects.
These test suites are not necessarily suited to uncover energy-related defects.
This work is a report about µDROID [8]. µDROID provides an energy-aware
mutation framework which is able to assess the quality of test suites in regards
of their ability of unveiling energy-related defects and to improve them by un-
covering missing test cases.
In order to create a proper testing framework for energy-related defects like
µDROID Jabbarvand and Malek [8] had to overcome two challenges. The first
challenge was the construction of a defect model which describes the creation of

2 Stefan Schott

the different app mutants. In order to construct this defect model an extensive
list of energy anti-patterns in Android has been collected and analyzed.
The second challenge was the creation of an automatic oracle which can au-
tomatically compare the results of the mutation tests of µDROID without the
developer having to compare these results manually and thus saving time and
resources.

In Section 2 important concepts regarding mutation testing and Android ac-
tivities are explained, which are needed in order to understand the µDROID
framework. Section 3 shows an overview of the individual components of the
µDROID framework and describes them in detail. An overview of related litera-
ture is given in Section 4. The final section contains the conclusion which sum-
marizes the topics presented in this paper and shows an evaluation of µDROID
for use in practice.

2 Fundamentals

This section describes some basic concepts like mutation testing (section 2.1)
and the Android activity lifecycle (section 2.2) which are needed in order to
understand the functionality principle of µDROID.

2.1 Mutation Testing

Mutation testing is a technique that is used to evaluate a test suite’s ability to
uncover defects of the program under test and discover missing test cases. This
approach generates so called mutants from the program under test which are
each seeded with a small artificial defect that developers commonly make during
development. These artificial defects are called mutation operators. Mutation
operators can either be based on a defect model which is a set of rules that
represents commonly made mistakes by developers or they can be based on the
syntactical mutation of elements of the programming language (e.g. replace a
less-than operator by a less-than-or-equal operator) [9].

Original
Program

Mutant
Mutant
Mutant

Test Suite Output
Comparison

Different Output

Same Output

Mutant killed

Mutant survived

Fig. 1. Mutation testing procedure

Figure 1 describes the procedure of mutation testing. At first the test suite
you want to test is executed on the original program and each mutant. Then the

µDROID: An Energy-Aware Mutation Testing Framework for Android 3

outputs of the original program and the mutants get compared. If the original
program and the mutant produce different outputs the mutant is detected which
is also known as killing the mutant. If the outputs are the same the mutant is
not detected and the mutant survived.

if(a < b) {
 print("x");
}

Test Suite Output
Comparison

Different Output

Same Output

Mutant killed

Mutant survived
if(a <= b) {
 print("x");
}

a = b

a ≠ b

Original Program

Mutant

Fig. 2. Mutation testing example

Figure 2 illustrates an example. The mutant replaced the less-than operator
by a less-than-or-equal operator from the original program. After executing our
test suite on the original program and the mutant the outputs are compared.
If the test suite tests for the case a =b the original program and the mutant
produce different outputs (the mutant prints an x, the original program does
not). This means the mutant was killed. If the test suite does not test for the
case a =b the original program and the mutant produce the same output which
means the introduced defect in the mutant was not detected and the mutant
survived. This tells us that our test suite is missing the important test case a =b
and therefore should be improved.

2.2 Android Activity Lifecycle

Unlike most other programming paradigms which execute a main() method after
starting a program and calling different functions from it, that are often used for
desktop programs, an Android application consists of multiple activites which
are each responsible for a set of specific tasks. This is due to a mobile application
often having different entry points to the application depending on the context
of its usage. If you open your email application directly from your home screen it
shows a list of your received emails. If you click on an email address your email
application is opened with the screen for writing an email [2].

Figure 3 shows the Android activity lifecycle. An activity can be in multiple
states during its lifetime. After launching, the activity transitions through the
green states until it is fully launched and reaches the Resumed state. Prior to
reaching a new state a callback method is invoked. For example the onCreate()
method is called before the activity transitions from the Launch to the Created
state. Functions that need to be performed before presenting the activity to the
user can be implemented or called in the onCreate() method. An activity can
also be paused and resumed later on. After an activity is done with its task the
onDestroy() method will be called and the activity will be destroyed [1].

4 Stefan Schott

onCreate()
Launch onStart()

Created onResume()
Started

onPause()

Resumed
onResume()

onStop()

Paused

onStart()

onDestroy()

Stopped
Destroyed

Fig. 3. Android Activity Lifecycle, based on [1]

3 µDROID Framework

Figure 4 shows the complete framework of µDROID. The procedure of µDROID
starts with an eclipse plugin (section 3.2) which receives the source code of
the original Android app and the set of mutation operators (section 3.1), that
describes the rules for the mutations, as input and then generates the individual
mutants out of these inputs. Then the runner/profiler (section 3.3) executes
the test suite that should be assessed by µDROID on the original app and the
generated mutants. The runner/profiler produces power traces, which show the
energy consumption of the app over a certain amount of time, as output. These
power traces are then analyzed and compared to each other by the analysis
engine (section 3.4). Based on the results of the analysis engine a mutation
score (section 3.5) is computed which represents the final output of the µDROID
framework. The eclipse plugin and the analysis engine are executed on a desktop
computer, while the runner/profiler and the test suite are executed directly on
the Android device.
In the following sections each component as well as the inputs and outputs of
the µDROID framework will be explained in detail.

Fig. 4. µDROID framework overview [8]

µDROID: An Energy-Aware Mutation Testing Framework for Android 5

3.1 Mutation Operators

The mutation operators describe how energy defects are introduced into the
mutants source code. µDROID provides a total of 50 mutation operators which
are divided into six classes.

Connectivity Mutation Operators
Connectivity mutation operators introduce energy defects which are related to
WiFi, radio or Bluetooth usage. Figure 5 and 6 show the application of a con-
nectivity mutation operator.
Downloading a big file using mobile data consumes a lot more energy than down-
loading it using WiFi. Therefore the developer should always check if WiFi is
enabled before downloading a big file. The mutation operator from the example
removes this check and replaces it by a true statement. If the test suite never
disables WiFi and always performs its tests using WiFi instead of mobile data
the power traces of the mutant and the original app will look the same and
therefore the mutant survives. This behaviour can be observed in figure 5. Fig-
ure 6 illustrates the test suite disabling WiFi during testing. If WiFi is disabled
the mutants power trace will be a lot bigger than the original apps power trace,
therefore killing the mutant. If the mutant with this mutation operator survives
all tests of the test suite it tells the developer that his test suite is missing test
cases which disable WiFi usage.

run
testif(isWifiEnabled()){

 // download file
}

run
testif(true){

 // download file
}

Power-Trace

Power-Trace

Mutant survived=

Fig. 5. WiFi always enabled in test

run
testif(isWifiEnabled()){

 // download file
}

run
testif(true){

 // download file
}

Power-Trace

Power-Trace

Mutant killed≠

Fig. 6. WiFi disabled in test

Location Mutation Operators
Location mutation operators introduce energy defects which are commonly made
during obtaining the devices location. Figure 7 illustrates the procedure to ob-
tain a location in Android. During activity creation a LocationListener has to
be registered. It then continues to update the devices location until it is un-
registered. Figure 8 shows the introduction of a location mutant operator. The
mutation operator removes the unregistration of the LocationListener in line 10,
when the activity is destroyed. This causes the mutant to update the location of
the device even though the location is not needed anymore after the destruction
of the TrackActivity. In order to kill the mutant the test suite has to continue
to mock locations even after the TrackActivity was already destroyed.

6 Stefan Schott

Fig. 7. Original location source code,
based on [8]

Fig. 8. Location mutation operator in-
troduced, based on [8]

Wakelock Mutation Operators
During a wakelock in Android the device or a part of it is kept awake by the
app. The device can not go into an idle state during this time. In order for an
app to request a wakelock the activity has to register it and after not needing
it anymore to unregister it. Wakelock mutation operators are similar to location
mutation operators. They remove the unregistration of the wakelock request for
each component of the device.

Display Mutation Operators
The display is the most power consuming component of a device. That is why
energy defects related to the display have to be thoroughly checked. Display mu-
tation operators introduce display related energy defects like setting the screen
brightness to maximum or turning off the display timeout completely.

Recurring Callback and Loop Mutation Operators
Recurring callbacks are often used to implement repeating tasks in Android.
The frequency of these repeating tasks should be related to the current battery
level of the device. If the energy level falls beneath a threshold like 15% the
frequency should decrease accordingly. Recurring callback and loop mutation
operators remove this frequency decrease. In order to kill a mutant which con-
tains a mutation operator of this class the test suite has to perform tests with
mocked battery levels.

Sensor Mutation Operators
To obtain sensor values in Android a SensorEventListener has to be registered
during activity creation and unregistered once sensor values are not needed any
more. Sensor mutation operators remove this unregistration similar to location
mutation operators. The device keeps requesting sensor values even though the
app does not need them anymore and therefore keeps consuming energy. Other
mutation operators of this class increase the frequency of sensor value updates.

µDROID: An Energy-Aware Mutation Testing Framework for Android 7

3.2 Eclipse Plugin

The eclipse plugin is responsible for the mutant generation. Figure 9 shows the
workflow of it. First the plugin takes the source code of the original app and
generates the abstract syntax tree (AST) representation of it. Then it modifies
the AST according to the rules the mutation operators specify and hereby intro-
duces energy defects into the AST representation of the source code. Finally it
then transforms the AST representation back into program code. This program
code represents the implementation of the mutant.

Original App AST
Representation

Modified AST

Mutation
Operators

Mutant

Eclipse Plugin

Fig. 9. µDROID eclipse plugin workflow

3.3 Runner/Profiler

The runner/profiler is responsible for executing the test suite that is to be eval-
uated on the original app and each generated mutant version of it. It generates
a power trace for each test in the test suite which represents the energy con-
sumption of the individual app version during test execution. Figure 10 shows
an example for generated power traces. It shows power traces for an app called
Sensorium, which collects several sensor values of the device it is executed on
like WiFi usage or the devices current location. Power trace (a) shows the energy
consumption of the execution of the original unmodified app. Power trace (b)
shows the energy consumption of a mutant of the app which contains the redun-
dant location update mutation operator. It continues to update its location in an
unnecessarily high frequency. These redundant location updates can be observed
in the power trace. The mutant version of Sensorium has an observably higher
energy consumption than the original version.

3.4 Analysis Engine

Comparing the original and the mutant power traces is a tedious and time-
intensive task for the developer. The µDROID framework provides an analysis
engine which is able to automatically compare power traces and based on this
comparison to predict whether the mutant was killed by the test suite or whether
it survived. Figure 11 illustrates the workflow of the analysis engine during one

8 Stefan Schott

Fig. 10. Power-Traces of Sensorium app [8]

run. This procedure is executed for each test in the test suite. The analysis en-
gine receives the power traces of the mutants and 30 power traces of the original
app as input. It selects one representative power trace for the original app to
account for fluctuation in the power measurement. After that the analysis en-
gine computes the DTW distance [4] (DTW stands for Dynamic Time Warping.
DTW is an algorithm that is used to compare the similarity between two se-
quences.) of the representative power trace and one mutant power trace. This
DTW distance of the original and the mutant power trace then gets compared
against a threshold which represents the upper bound of a 95% confidence in-
terval which is calculated from the 30 original power traces. This means that if
the DTW distance is lower than the threshold there is a 95% probability that
the original and the mutant power traces are the same besides some noise. If
the DTW distance is higher than the threshold the analysis engine predicts that
the original and the mutant power traces differ which means that the mutant
was detected and therefore killed. If it is lower than the threshold the analysis
engine predicts that the mutant was not detected and therefore survived. This
procedure is then repeated for each of the remaining mutants.

Original App
Power-TraceOriginal App

Power-TraceOriginal App
Power-Trace

Representative
Power-Trace

select

Mutant
Power-Trace

DTW
Distance

compute

compute

Compare DTW
to Threshold

Mutant
killed

Mutant
survived

DTW
higher

DTW
lower

Fig. 11. Single run of the analysis engine

3.5 Mutation Score

The mutation score is the final output of µDROID. It is calculated, based on the
results of the analysis engine, as follows:

Mutation Score = #Mutants killed
#Mutants

µDROID: An Energy-Aware Mutation Testing Framework for Android 9

It describes the percentage of mutants that have been killed by the test
suite. The higher the value, the higher the amount of mutants that were killed
in relation to the amount of mutants that were generated. The mutation score
indicates how good a test suite’s ability of uncovering energy defects is. A high
mutation score indicates a really high ability of uncovering energy defects, while
a low score indicates a very bad ability of uncovering energy defects.

4 Related Work

The µDROID framework is based on a paper [7] that was also released by Jab-
barvand and Malek. This paper deals with ways to advance the energy testing
of mobile applications. Jabbarvand and Malek propose a three-step plan to cre-
ate an energy testing framework for mobile applications. The first step is the
creation of a energy-aware test generation tool that is able to automatically gen-
erate tests which exercise the energy efficiency of mobile applications. The second
step is the development of a energy-aware test suite adequacy assessment tool
which is capable of evaluating a test suite’s ability to uncover energy defects.
The third step is the creation of a energy-aware test suite minimization tool
which is responsible for reducing the amount of tests that are needed to check
the applications energy efficiency in order to save time and resources. µDROID
is the tool which is used as the second step of their three-step plan. Besides
proposing this three-step plan they also started collecting energy anti-patterns
in this paper which are used to construct the different mutation operators used
by µDROID.
Currently there is no further work that is based on the µDROID framework,
however there is further work [6] from the authors of µDROID, Jabbarvand and
Malek which continues to focus on the advancement of energy testing of mo-
bile applications. In [6] they present the COBWEB framework which is a tool
that uses a search-based algorithm to automatically generate energy tests for
Android. The COBWEB framework is used as the first step of their three-step
plan to advance energy testing for mobile applications.
There are several other proposed mutation testing frameworks which focus on
functional correctness instead of energy efficiency. Just [10] proposes a mutation
testing framework called Major which is a functional correctness testing frame-
work for Java. Deng et al. present a mutation testing framework in [5] which
is a framework for functional correctness testing for Android. They provide five
classes of functional correctness mutation operators. Four of them cover Android
specific app elements while the fifth covers common mistakes from Android de-
velopers.

5 Conclusion

This paper presented the energy-aware mutation testing framework µDROID. A
framework which is able to assess the quality of a test suite’s ability to uncover
energy-related defects. Since there is currently a lack of energy testing tools

10 Stefan Schott

µDROID provides a service which is a real need in its domain.
In the beginning of this paper basic concepts like mutation testing and the An-
droid activity lifecycle were explained which the knowledge of is needed in order
to understand the concepts of µDROID. Afterwards an overview of µDROIDs
components and their individual functionality in detail has been presented.
On µDROID conducted experiments [8] on 100 randomly selected open source
apps show promising results for the usage of µDROID in practice. For each app
on average 28 mutants could be generated. The amount of mutants ranged from
five to 110 with each mutation operator being present at least once which indi-
cates that even small apps can benefit from µDROID. Test suites developed by
two experienced Android developers increased their mutation score from 34.5%
to 90.4% after using µDROID to assess and improve their test suites which
shows that even experienced developers can profit from µDROID. Additionally
the analysis engine showed an accuracy of 94% in its predictions which allows
for an automated application of µDROID. These results indicate that µDROID
offers a promising ability for use in practice and is able to address the need for
an energy-aware testing framework for Android devices.

References

[1] Android api guide, android activity lifecycle. https://developer.android.
com/guide/components/activities/activity-lifecycle. [Online; ac-
cessed 02-December-2019].

[2] Android api guide, introduction to activities. https://developer.android.
com/guide/components/activities/intro-activities. [Online; ac-
cessed 02-December-2019].

[3] Dr. Hannes Ametsreiter. Smartphone-markt: Konjunktur und trends.
https://www.bitkom.org/sites/default/files/2019-02/
Bitkom-Pressekonferenz%20Smartphone-Markt%2020%2002%202019%
20Pr%C3%A4sentation_final.pdf, February 2019. [Online; accessed
01-December-2019].

[4] Donald J Berndt and James Clifford. Using dynamic time warping to find patterns
in time series. In KDD workshop, volume 10, pages 359–370. Seattle, WA, 1994.

[5] Lin Deng, Jeff Offutt, Paul Ammann, and Nariman Mirzaei. Mutation operators
for testing android apps. Information and Software Technology, 81:154–168, 2017.

[6] Reyhaneh Jabbarvand, Jun-Wei Lin, and Sam Malek. Search-based energy test-
ing of android. In Proceedings of the 41st International Conference on Software
Engineering, pages 1119–1130. IEEE Press, 2019.

[7] Reyhaneh Jabbarvand and Sam Malek. Advancing energy testing of mobile ap-
plications. In 2017 IEEE/ACM 39th International Conference on Software Engi-
neering Companion (ICSE-C), pages 491–492. IEEE, 2017.

[8] Reyhaneh Jabbarvand and Sam Malek. µDROID: An Energy-Aware Mutation
Testing Framework for Android. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pages 208–219. ACM, 2017.

[9] Yue Jia and Mark Harman. An analysis and survey of the development of mutation
testing. IEEE transactions on software engineering, 37(5):649–678, 2010.

[10] René Just. The major mutation framework: Efficient and scalable mutation anal-
ysis for java. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis, pages 433–436. ACM, 2014.

