
Operational Transformation and its Relevance in Games

Felix Pauck
6574788

fpauck@mail.upb.de

Patrick Steffens
7000302

psteffen@mail.upb.de

Abstract

Operational transformation is a mature technique for maintaining con-
sistency in collaborative systems, also known as groupware. By pre-
senting a case study, this paper illustrates that many games can be
played collaboratively by using operational transformation. Based on
a well-known consistency model described in this paper, it is evaluated
which properties an operational transformation algorithm must have to
guarantee in order to make a game collaboratively playable. Eventually,
the findings of this paper lead to a definition of a class of games that
can be realized with operational transformation, namely collaborative
games.

1 Introduction

Collaborative software or groupware can be used to allow multiple users to work simultaneously on the same
resource. Editors is one of the most common applications of collaborative software. Today there exist different
versions of such editors for different resources. Google Docs1, for example, contains editors for text documents,
spreadsheets and presentation slides. Originally defined in a paper from 1989[1], Operational Transformation
(OT) is still a state-of-the-art approach to realize such editors. As the name suggests, operational transformation
is a technique to transform operations executed by different users on the same resource. The idea is to use such
transformations to keep the resource consistent among all users. OT’s benefit compared to other approaches
is that the effect of an operation executed locally is immediately available without the system having to wait
for a server processing the operation. Thereby, users of a collaborative system using OT, neither rely on a fast
network connection nor do they have to wait for other users.

In the aforementioned paper about operational transformation [1], the authors mention games as an intuitive
example for groupware: “An example that many find easy to relate to is the multi-player game”. Further-
more, that the interest of playing a game collaboratively exists is demonstrated by the success of Twitch plays
Pokémon2, which is a social experiment started in 2014 and played by roughly a million players in total during
the first two weeks. It is hosted on a streaming platform and allows an arbitrary number of users to play different
editions of Pokémon games collaboratively just by sending commands via the chat of the streaming platform.
Two different modes are supported: anarchy and democracy. In anarchy mode every command is executed
immediately, whereas in democracy mode a command is only executed if there are enough players who invoke
the same command within a certain period. With these very basic approaches of handling collaboration, the
first Pokémon game could be finished within 16 days. Since a single player can provably finish the game much
faster3, it is obvious that there is no advantage in playing the game with such many players considering the time
required to finish it.

1https://docs.google.com
2https://www.twitch.tv/twitchplayspokemon
3According to http://wiki.pokemonspeedruns.com/index.php/World_Records, the current world record for finishing Pokémon

Red is 1:49h.

1

https://docs.google.com
https://www.twitch.tv/twitchplayspokemon
http://wiki.pokemonspeedruns.com/index.php/World_Records


Nevertheless, until today it is neither known if games can be played collaboratively, using OT nor if it would
be benefitial in terms of finishing a game more efficiently. In this paper, we show that it is possible and argue
why it can be benefitial in specific games (see Section 5). To do this, we develop a simplified version of the well
known single player game Solitaire which is described in Section 2. In Section 3, different consistency models are
introduced which must be implemented by OT algorithms as described in Section 4 in order to enable playing
this game collaboratively.

2 Simplified Solitaire

Solitaire is a famous card game that has been part of Microsoft Windows for decades now. In this paper a
simplified version of this game is used as a running example. Furthermore, we explain how OT can be used to
play this simplified version of Solitaire in a collaborative way.

The original Solitaire game is played with 52 cards, including 13 cards of each suit: ♣ Clubs, ♦ Diamonds, ♠
Spades, ♥ Hearts. The goal is to sort all cards to four cardstacks, one for each suit. The designated order is: A
(Ace) < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < J (Jack) < Q (Queen) < K (King). To do so, 7 open stacks
can be used to shift cards around and one stack can be browsed. We assume that the rules4 are widely known
and do not explain them in detail in this paper. Doubtlessly, in order to understand the collaborative part of
the simplified version it is not required to know the rules of the game.

Figure 1: Simplified Solitaire Overview

This simplified version is used because it allows us
to focus on the interesting collaborative part instead of
explaining details and special cases. First of all, in this
version of Solitaire the number of suits and cards is re-
duced. Only the 13 cards of Clubs (♣) and Hearts (♥)
are considered. Accordingly, the number of open stacks
is changed from 7 to 5.

2.1 Definition

The complete game can formally be defined by the fol-
lowing three sets:

• A = {A♣, ...,K♣, A♥, ...,K♥} is the set of all cards.

• S = {B, T1, T2, S1, S2, S3, S4, S5} is the set of all
cardstacks. The cardstacks again are sorted sets of
cards. Assume that all cardstacks are sorted from
top to bottom. Thus, the first element in each card-
stack is the card that can be found on top of this
stack.

• V ⊆ A the set of currently visible cards.

In addition, let X[i] refer to the card which can be found at position i in cardstack X starting with i = 1 for the
card on top of the stack and going on with i > 1 towards the bottom of the stack. Furthermore, a configuration
C = (S, V ) reflects a state of the game. A configuration can be changed by executing an operation. For example

a configuration C1 can be reached from configuration C0 by execution operation O: C0
O−→ C1.

In Simplified Solitaire the B stack can be browsed endlessly. The two target cardstacks T1 and T2 are used to
collect the already sorted cards. In this case the cards have to be sorted consecutively in ascending order from
Ace to King and all cards in T1 and T2 must have the same suit. All other cardstacks are open stacks which can
be used to shift cards around. The cards on these stacks on the other hand have to be ordered consecutively
in descending order from King to Ace and the color of each card has to be different from the color of the card
below.

Figure 1 shows one possible configuration of a Simplified Solitaire game. In this configuration for example the
cardstack S2 ∈ S holds the cards S2[1] = 4♥ and S2[2] = 8♣. But since the 8 of Clubs is not an element of V ,
the players cannot see the value of that card. Likewise in Figure 1, T1 holds the cards {3♣, 2♣, A♣} even if only
the 3 of Clubs can be seen. Hence, it is part of the goal of the game to reveal all hidden cards in all open stacks
(S1, ...S5). T2 is still empty in this example.

4Description of the original Solitaire: https://en.wikipedia.org/wiki/Microsoft_Solitaire

2

https://en.wikipedia.org/wiki/Microsoft_Solitaire


2.2 Operations

To play the game, every player can access two types of operations, namely next and move. By executing one
of these, the current configuration Cx is transformed into another configuration Cx+1. The next() operation
uncovers the next card on the browsable cardstack (B). Let x = B[1] be the card on top of B and y = B[2] be
the card that should be uncovered. At first the next operation takes x and puts it at the bottom of B. In turn,
y becomes the card on top of B. Secondly, it replaces x by y in V .

The move(c, From, To) operation moves anything from a single card up to a complete stack on top of
another stack. More precisely, it takes c and all cards on top of c in the From-stack and puts them on top of
the To-stack. Furthermore c is equal to From[i] and if From[i + 1] exists and From[i + 1] /∈ V holds, then
From[i+1] is added to V as well as c is added to V if c /∈ V . In other words, the card below c on the From-stack
becomes visible.

Considering the example illustrated in Figure 1, the yellow arrows represent three operations O1, O2 and O3.
Operation O1 = next() uncovers the next card behind the Jack of Hearts. Denote move(Q♣, S5, S1) as
operation O2. Once it is executed the Queen of Clubs and every card on top of it is placed on top of the King
of Hearts on stack S1. By operation O3 = move(J♥, B, S5) the Jack of Hearts is placed on top of the Queen
of Clubs on stack S5.

Figure 2 shows the execution of these operations in a two player scenario. Alice and Bob play Simplified
Solitaire by collaborating without any extra means of communication. Alice executes operation O1 (see À)
and immediately reveals the subsequent card in stack B behind the Jack of Hearts. Then Alice moves the
Queen of Clubs by executing operation O2 (see Á). Lastly she receives the operation O3 from Bob (see Ä). The
occurring problem is that the Queen of Clubs cannot be located on stack S5 anymore, because the execution of
O2 moved it to S1. In order to solve this problem, operational transformation can be used. A transformation of
operation O3 makes sure that the Jack of Hearts is still placed on top of the Queen of Clubs. Such an operational
transformation is illustrated by the symbol: →t. In the current case O3 is transformed into O′

3: O3 = move(J♥,
B, S5) →t O

′
3 = move(J♥, B, S1). The last parameter has been transformed. By executing O′

3 now (see Ä),
the Jack of Hearts is placed on top of the Queen of Clubs on stack S1 as intended. From Bob’s perspective
another operation has to be transformed. Once he receives operation O1 (see Ã) he wants to uncover the card
under the Jack of Hearts in the browsable stack (B). But this is not required anymore, because the Jack of
Hearts has already been moved by his own operation (O3, Â) what implicitly uncovered the subsequent card.
Hence, the operation O1 is transformed into O′

1 = NOP (see Ã) where NOP stands for “no operation” (O1 →t O
′
1).

The described transformations are enforced by the collaborative system in order to achieve consistency. How
to achieved consistency exactly is defined in the next section based on consistency models.

Alice Bob

O3 = move(J♥, B, S5) ÂÀ O1 = next()

O′
1 = NOP Ã

O2 = move(Q♣, S5, S1)Á

O2 = move(Q♣, S5, S1) Å

Ä O′
3 = move(J♥, B, S1)

Time

Figure 2: Two Player Execution Scenario

3 Consistency Models

Initially, operational transformation was developed to be used as a part of groupware or collaborative systems.
In such a system one of the most important aspects is consistency. Every user should always see and use the same
basis, which in the running example would be the board. However, maintaining consistency can be challenging.

3



To guarantee consistency, the system must follow a consistency model that describes exactly how to achieve
consistency for all users. Several models have been developed and published to accomplish that task.

In the following, we focus on basic models, because they illustrate best what benefits can be achieved by using
operational transformation. Nevertheless, there are other models that might be better in measure of generality
and provableness. Furthermore, we discuss how well these models can be applied to games and in particular to
Simplified Solitaire.

In general, a consistency model consists of a collection of different properties. A system or game implementing
such a model has to make sure that all properties are always satisfied in order to guarantee consistency.

3.1 The CC Model

The CC model is the most basic consistency model and it is also the basis for all other models described in this
section. It was introduced in 1989 in the paper “Concurrency Control in Groupware Systems”[1] and is based on
two properties, namely Precedence (Causality) and Convergence. In the following definitions of these properties
a site refers to a viewpoint of a user. A site in games for example refers to a player’s instance of the game.

Definition 1 The Precedence property ensures that all dependent operations are executed in the same order at
all sites.

One operation is dependent on another if they are related by the precedes relation (→p), which is formally
defined as Lamport’s “happened-before” relation[2]. It relates operations to each other by the time of their
generation. Hence, Oa generated at site i precedes Ob generated at site j (Oa →p Ob) if and only if one of the
following cases is true:

1. i = j and operation Oa was generated before Ob was generated.

2. i 6= j and operation Oa was executed at site j before Ob was generated.

3. There exists a set of operations {Ox1
, ..., Oxn

} with Oa →p Ox1
→p ...→p Oxn

→p Ob.

In the example visualized in Figure 2 only the operation O2 depends on O1 (O1 →p O2), because case 1 is true.
Both operations are generated on the same site as well as Oa is generated before Ob. Thereby, O1 has to be
executed before O2 at all sites. Case 2 is never fulfilled by any set of operations from the example, because Alice
and Bob never execute an operation received from the other before generating their own operations. Additionally,
since there is only one dependency (O1 →p O2) in the example, case 3 never holds.

Definition 2 The Convergence property ensures that the configuration reached after the execution of a set of
operations is the same at all sites.

To achieve the convergence property, a total order could be built. This total order could determine for example
that any operation Oi with i < j is executed before any operation Oj is executed. For the example described
in Section 2, this allows only one execution order. Operation O1 has to be the first one followed by O2 which
in turn is followed by operation O3. To achieve such a total order at all sites, an undo/redo scheme could be
used. By that, Bob for example would undo operation O3 once he receives O1 and then automatically execute
O1 followed by O3. This method requires that all operations are reversible.

This shows that all properties of the CC Model can be satisfied without using operational transformation at
all, but in consequence of that the rules of the game might be violated. For example, by executing O2 before
O3 the Jack of Hearts is placed on stack S5 but not on top of the Queen of Clubs as originally intended. Hence,
the rules of Simplified Solitaire are violated, because the Jack of Hearts can only be placed on top of the Queen
of Clubs or on top of the 10 of Hearts on one of the target stacks. In fact this can happen even if each player
by himself only invoked operations that do not violate the rules of Simplified Solitaire. The model which is
described next overcomes this issue by adding a further property.

3.2 The CCI Model

This model is built upon the CC model. It consists of three properties: Causality Preservation (Precedence),
Convergence which are defined in the same way as in the CC model and Intention Preservation. To satisfy the
latter one a technique like operational transformation has to be used.

4



Definition 3 Intention Preservation guarantees that the intention of any executed operation is always the same
and independent of the site of execution.

Assume the initial configuration is CStart and the set of operations that are executed is {O1, O2, O3} as
depicted in Figure 2. On Alice’s site this has to lead to the following configuration changes:

CStart
O1−−→ C1

O2−−→ C2
O3→tO

′
3−−−−−→ CFinal

On Bob’s site on the other hand the sequence of configuration changes has to be:

CStart
O3−−→ C3

O1→tO
′
1−−−−−→ C3

O2−−→ CFinal.

Unless the operations O1 and O3 are transformed as described in Section 2, these sequences violate the rules
of Simplified Solitaire. Now to satisfy the intention preservation property, the intention of O′

1 and O′
3 has to

match the intention of O1 and O3 respectively. O1 should uncover the next card on stack B. Since that already
happened by moving the Jack of Hearts the intention is preserved if O′

1 simply does nothing. The transformation
function realizes this by transforming the operation into NOP. O3 should move the Jack of Hearts on top of the
Queen of Clubs. After the transformation O′

3 still has the same effect even if the Queen is located on top of
another stack, namely S1. In both cases the transformation preserves the intention of the original operation.
So if the intention of any operation is defined according to the rules of Simplified Solitaire this implies that any
executed, rule-compliant operation and its transformed replica cannot violate the rules of Solitaire. Additionally,
the convergence property is satisfied as well since both players end up with the same configuration (CFinal) on
their site after execution of all three operations.

Still, the CCI model lacks a formal and generic definition of intentions and therefore does not allow a complete
proof of the intention preservation property. However, there exist other models that overcome this problem as
mentioned in the next Section.

3.3 Further Consistency Models

There exist at least two more consistency models comparable to the CCI model. In particular, the CSM model
[3, 4] and the CA model [5]. On one hand, these models share the causality property. On the other hand, their
other properties are defined differently. But these properties still aim for the same goals as the convergence
and intention preservation properties from the CCI model. The only difference is that their definitions are more
generic and less ambiguous and by that it is easier to prove them formally. However, since the rules of games
already strictly define how to preserve the intention of any operation, the CCI model in combination with these
rules is sufficient for maintaining consistency in games like Simplified Solitaire. Hence, the CSM and CA models
are not described any further in this paper.

4 Operational Transformation

In order to realize the aforementioned consistency models within a collaborative software system such as Sim-
plified Solitaire, the technique Operational Transformation (OT) which was introduced in Section 1 could be
used.

When specifying an OT system, an appropriate algorithm must be chosen, called OT algorithm. Ellis and
Gibbs [1] point out several properties an OT algorithm must have. First, the effect of an operation must be
available immediately on the system where it was executed. Second, it must relinquish locking techniques and
third, it must be fully distributive. The latter means, that the OT algorithm must be able to handle concurrent
operations generated on multiple sites where a site refers to a user’s local system on which an instance of the
OT algorithm runs. Two operations are considered concurrent if they were simultaneously generated on different
sites based on the same configuration. Concurrent operations are potentially conflicted as they potentially lead
to different configurations on each site after being executed. This is the case if another operation was executed
in between. Therefore, the OT algorithm chooses an appropriate OT function according to the operations’ type.
Such an OT function checks whether the operations are in conflict and transforms one of them accordingly.
However, if no conflict is detected, no transformation is performed and the operation is executed directly.

In the following, we introduce the properties an appropriate OT algorithm must fulfil in order to meet the
requirements of the CCI model which was considered suitable for collaborative games in Subsection 3.2. We
also present exemplary OT function definitions and show their use based on our running example introduced in
Section 2.

5



Figure 3: Overview OT Algorithm and Consistency Model

4.1 OT Algorithm

The OT algorithm and the different involved components described in this section are depicted in Figure 3. Such
an algorithm must be able to guarantee the following three properties defined for the CCI model: Causality
Preservation (by using state vectors), Convergence and Intention Preservation (by using OT functions). As will
be explained in more detail, these properties can be guaranteed by implementing specific data structures and
programmable constructs called OT functions. We show how it is possible to achieve these goals using techniques
originally introduced by the dOPT 5 algorithm [1].

Causality preservation implies that the execution order of incoming dependent operations must be preserved.
dOPT solves this issue by maintaining a state vector. The state vector is a data structure represented as an
n-tuple (s1, ..., sn) where si is the number of operations executed by site i. In the running example there are
n = 2 players where s1 would be the number of executed operations generated on Alice’s site and s2 those of Bob.
When an operation O is executed at site i, it is broadcast carrying i’s current state vector. Afterwards it updates
the state vector of the sending site. Sending site i’s vector along with O helps the receiving sites to determine
whether an operation is received in the correct order as will be illustrated in the following paragraph. We
denote the state vector delivered by Operation O as SVO(s1, ..., sn), whereas SVi(t1, ..., tn) denotes the current
state vector of site i. When O is received at a site, the algorithm determines if it can be executed directly, if
it must be transformed first or if it cannot be executed at the particular time and therefore must wait for its
processing. An example for the latter case is given in the following. If O or its transformation is executed, it
updates the site’s state vector accordingly by incrementing the generating site’s element by one. We denote that
as O →SV (s1, ..., sn).

In context of the running example, Figure 4 depicts two situations and how using a state vector helps preserve
the causality of operations. We assume that O1 →p O2 and that all state vectors are initialised with (0, 0)
meaning that no operation of Alice (i = 1) and also none of Bob (i = 2) was executed yet. In Figure 4a, the
algorithm on Bob’s site first executes O3 (see Æ) and then broadcasts the operation along with its current state
vector of (0, 0) before updating it to (0, 1). On arrival of O1 and O2 (see Ç and È) it would find that they were
received in the correct order and subsequently update Bob’s current state vector to (1, 1) and (2, 1). Eventually,
Bob’s current state vector of (2, 1) expresses that Bob’s algorithm has executed two operations of Alice and one
operation of Bob.

In Figure 4b Alice executes O1 and sends it to Bob along with her current state vector of (0, 0) (see ¶) before
updating her state vector to (1, 0). Next, she executes and sends operation O2 (see ·). Even though both
O1 and O2 are sent subsequently, assume in this example, that due to network issues they arrive in a different
order at Bob’s site (see ¸ and ¹). On reception of O2 (see ¸), Bob’s algorithms, would find that O2 must have
been received out of order since the state vector (1, 0) expresses that Alice has already executed one operation
generated at her site (see ¶) while Bob’s state vector is still (0, 1), since Bob has not yet executed an operation
of Alice. Consequently, Bob’s algorithm would wait for the arrival of O1 (see ¹) before processing O2. Without
sending the state vector along with the operations, Bob would not be able to detect operations that arrive out
of order and consequently violate causality when executing them directly in the order they were received.

5dOPT: Distributed Operational Transformation

6



(a)

Alice Bob

SVO1
= (0, 0)

ÇO′
1 →SV (1, 1)

SVO2
= (1, 0)

ÈO′
2 →SV (2, 1)

ÆSVO3
= (0, 0)

O′
3 →SV (2, 1)

(b)

Alice Bob

¶ SVO1
= (0, 0)

¹O′
1 →SV (1, 1)

· SVO2
= (1, 0)

¸O′
2 →SV (2, 1)

SVO3
= (0, 0)

O′
3 →SV (2, 1)

E

Time

Figure 4: Using a state vector to preserve causality.

To guarantee convergence and intention preservation it does not suffice to only reorder the execution of
incoming operations [6]. Under the circumstances described in the following, it might be necessary to transform
a received operation against an already executed operation using an appropriate OT function. OT functions
are described further in Subsection 4.2. Intentions are preserved by transforming the operation according to the
game’s rules. Consequently, the intention of a transformed operation is equal to its original one. For instance,
regarding the running example, Bob intends to place the Jack of Hearts on the Queen of Clubs (O3, Â). Since
Alice moved the Queen of Clubs to another stack (see Á), Bob’s untransformed operation would become invalid
at Alice’s site, according to the rules. Thus, O3 must be transformed such that the Jack of Hearts is, as intended,
placed on the Queen of Hearts (O′

3, Ä), which both revalidates O3 and preserves its intention.
The task of choosing which operation shall be executed next and determining against which already executed

operations it must be transformed is crucial. dOPT solves this task with the help of a data structure called
request queue6, which contains all operations awaiting execution at a site i. The algorithm running on site i
searches this queue and for each operation Oj the corresponding state vector sj is compared to site i’s current
state vector si. Hence, three cases must be considered:

1. SVOj
(s1, ..., sn) = SVi(t1, ..., tn): Operation Oj can be executed directly without any transformation since

both sites i and j have executed the same number of operations for each site and as a result do not work
on inconsistent configurations at that point.

2. SVOj (s1, ..., sn) 6= SVi(t1, ..., tn) ∧ ∃sk, tk : sk > tk, k ∈ {1, ..., n}: Operation Oj cannot be executed as site
j has executed at least one operation more than site i.

3. Else: Oj can be executed but is conflicted with at least one formerly executed operation. It must consequently
be transformed first since SVOj

refers to a state older than SVi. Next it must be determined which of the
operations have already been executed on site i but not yet on site j when Oj was generated. These
operations have not affected Oj and are therefore conflicted with it. Consequently, they must be taken into
account for Oj ’s transformation.

By applying the above comparisons and choosing an appropriate OT function for case 3, the OT algorithm
is able to ensure that after execution of all, possibly transformed, operations on each site, all sites share equal
configurations, thus guaranteeing convergence.

4.2 OT Functions

If an operation must be transformed against another one, the OT algorithm chooses an appropriate OT function
according to their respective operation types. Simplified Solitaire supports two operation types: move and next.
Hence, there must exist OT functions for every combination of the two types. The algorithm dOPT realizes that
by building an n × n transformation matrix where n is the number of available operations and each element is
an OT function denoted as T<typeop1>,<typeop2>

.

6The request queue needs not necessarily be implemented as a classical First-in-first-out queue.

7



The 2× 2 transformation matrix for Simplified Solitaire would look as follows:

move next

move Tmove,move Tmove,next

next Tnext,move Tnext,next

In the running example depicted in Figure 2, on arrival of operation O1 (see Ã), Bob’s algorithm would detect
that O1 carries the vector (0, 0) while Bob’s current vector is (0, 1) and therefore case 3 as described in the
previous section would apply. This situation is also illustrated in Figure 4a (see Ç). It would further find that
O3 is the only operation that was executed on Bob’s site (see Æ) but not on Alice’s and therefore transform O1

against O3. Next, it must choose the appropriate OT function. Since O1 is of type next and O3 is of type move,
it would choose Tnext,move as an OT function where the first parameter is O1 and the second O3. An example
call could be:

O′
1 := Tnext,move(next(), move(J♥, B, S5))

Since a next operation implicitly always affects the browsable stack B, it does not need any parameters. The
first parameter of a move operation is the card that is to be moved (J♥). The second parameter is the stack, the
card is removed from (B) and the third parameter is the stack, the card is moved to (S5).

The function could be implemented as follows:

1 Tnext,move(next(), move(card , from , to)):

2 if (from = B)

3 return NOP // see O′
1

4

5 return next() // default: no conflict

Listing 1: Example implementation of a transformation function for a next/move operation pair.

The function Tnext,move takes two operations as arguments where the first operation argument is transformed
against the second. Knowing that the first operation unveils the next card on the browsable stack B and in turn
covers the former topmost card, the function must check whether the second operation intends to move that
card (Listing 1, Line 2). If this is the case, the first operation is transformed into a NOP operation (Listing 1,
Line 3) which has no effect on Bob’s configuration. The reason for the correctness of this transformation is that
moving the topmost card of B has the same effect as executing a next operation and by that, the transformation
preserves the intention of the original operation. Note, that strictly speaking, the configurations of Alice and
Bob are not equal after execution of the transformed operation O′

1 (see Ã) as Alice would expect the Jack of
Hearts still lie covered on B in her configuration. Hence, the transformation on Alice’s site must take this into
account in order to guarantee convergence.

When O3 arrives at Alice’s site (see Ä), it is added to Alice’s request queue - in which it is the only element.
O1 and O2 have already been subsequently executed on Alice’s site (see À and Á), thus Alice’s current state
vector would be (2, 0). The algorithm now compares this vector to that of O3 which is (0, 1). Again, case 3
applies and the algorithm searches for appropriate transformation candidates. Since, according to O3’s state
vector, both O1 and O2 have not yet been executed at Bob’s site when O3 was generated (see Â), O3 must first
be transformed against the more recent O2 and then against O1. The following statements could exemplarily be
executed:

O′
3 := Tmove,move(move(J♥, B, S5), move(Q♣, S5, S1))

O′′
3 := Tmove,next(O

′
3=move(J♥, B, S1), next ())

The relevant OT functions could be implemented as in Listings 2 and 3.
Since the number of cases that need to be checked can easily grow very large, we focus only on a subset of

all conflicting cases that can be found in our examples. In addition, the above implementations of OT functions
are by no means optimized as they serve primarily as comprehensible examples.

In Listing 2, the function Tmove,move checks in Line 2 whether the destination stack of the first operation (to1)
is equal to the source stack of the second (from2). If this is the case, the operation which is to be transformed
seemingly intends to move a card onto another, which has moved to another position. If this position is not a
target stack, the function replaces the first operation’s destination (to1) with that of the second operation (to2)
and returns the transformed operation (Line 3). As a result, the intention of Bob, which is moving the Jack of
Hearts onto the Queen of Clubs, can be preserved. As explained before, following the first transformation, the

8



1 Tmove,move(move(card1 , from1 , to1), move(card2 , from2 , to2)):

2 if (to1 = from2 and to2 /∈ {T1, T2})
3 return move(card1 , from1 , to2) // see O′

2

4

5 if (to1 = from2 and from2 ∈ {T1, T2})
6 return [move(card1 , to1 , from1), // see O′

5

7 move(card2 , from2 , to2)]

8

9 if (to2 = from1 and from1 ∈ {T1, T2})
10 return NOP // see O′

4

11

12 [...]

13

14 return move(card1 , from1 , to1) // default: no conflict

Listing 2: Example implementations of move/move and move/next transformation functions.

1 Tmove,next(move(card , from , to), next ()):

2 if (from = B)

3 return move(card , from , to) // see O′
3

4

5 [...]

6

7 move(card , from , to) // default: no conflict

Listing 3: Example implementations of move/move and move/next transformation functions.

result (O′
3) needs to be transformed against O1 (Listing 3, Lines 2-3). If the move operation intends to move a

card from the browsable stack B while the same card is about to be covered by the next operation, the effect
on the configuration is the same for both. Thus, no further transformation must be performed.

When O2 arrives at Bob’s site (see È), it carries the state vector (1, 0). Since O′
1 was executed before, Bob’s

current vector is (1, 1). Hence, O2 must be transformed against O′
1 and O3. Both OT functions will find that

there is no conflict with O′
1 and O3 respectively and thus execute O2 as is (see Å). Executing an operation

without transformation is the default for all OT functions since it often suffices in order to achieve convergence.
Up to this point, we did not explicitly mention any prioritizations. For games, the most logical highest priority

is: reaching the goal. Thus, this priority must be considered when defining an OT function even if that implies
that an operation needs in turn be undone.

In the following, we discuss a special case where an operation cannot be transformed directly and must be
undone first. Figure 5 depicts a scenario where Alice removes a card from the same target stack Bob tries to
place a card on.

Alice Bob

º O4 = move(3♣, T1, S2)

O′
4 = NOP ¼

»O5 = move(4♣, S3, T1)

½ O′
5 = [move(3♣, S2, T1)

¾ move(4♣, S3, T1)]

Time

Figure 5: Special conflict case.

Alice intends to move the Three of Clubs from target stack T1 onto open stack S2 (O4, º). Simultaneously,
Bob moves the Four of Clubs to T1 (O5, »). This obviously is a conflict because Bob’s move would not be
valid according to the rules if Alice’s move is executed and vice versa. Thus, a prioritization must be defined.
As stated above, the priority in games is usually reaching the game’s goal. The goal of Simplified Solitaire is
reached if all cards are placed on both target stacks, one for each color. Thus, moving a card to one of the target

9



stacks is assigned a higher priority than removing a card from a target stack. This also solves conflicts where
two players move the same card to different stacks, since a card can either be placed on exactly one target stack
or one open stack.

See Listing 2 for an exemplary implementation of the transformations of O4 and O5 (Lines 10 and 6-7). The
respective function calls could look as follows:

O′
4 := Tmove,move(move(3♣, T1, S2), move(4♣, S3, T1))

O′
5 := Tmove,move(move(4♣, S3, T1), move(3♣, T1, S2))

When O4 arrives at Bob’s site (see ¼), it needs to be transformed against O5. Since both operations are contrary
in that one operation turns the other invalid and O5 has a higher priority, O4 is transformed into a NOP (Listing 1,
Line 10) which makes O4 have no effect on Bob’s configuration. On the other side, Alice receives O5 (see ½) after
already having executed O4 (see º) and the OT algorithm finds that O5 needs to be transformed against O4.
Again, as O5 has higher priority than O4 and both operations are contrary, O4 must first be undone (Listing 1,
Line 6). The configuration after execution of this operation is the same as the one at the time O5 was generated
at Bob’s site (see »). Thus, O5 can be executed directly (Listing 1, Line 7, ¾), leading to equal configurations
on both Alice’s and Bob’s site. Again, note that by applying an OT function the system reached a convergent
state with Bob’s intention preserved. Even though Alice’s original intention was violated because her operation
was simply undone, we reason that due to sensible prioritization towards the goal of the game, Alice’s move is
made invalid and would therefore not be executed anyway.

Sun et. al. distinguish between two types of transformation functions: inclusion and exclusion transfor-
mation [7]. Given two operations Oi and Oj , an inclusion transformation transforms Oi against Oj explicitly
including the impact of Oj . An exclusion operation on the other hand excludes the impact of Oj thus preserving
the intention for operation Oi by omitting the impact of Oj . Even though it is not always possible to clearly
distinguish between inclusion and exclusion transformation, the above defined OT functions can be considered
inclusion transformations.

Exclusion transformations were originally developed to overcome the major drawback of dOPT which is the
lack of guaranteeing intention preservation. This makes dOPT primarily applicable for the CC model described
in Subsection 3.1. To overcome this drawback, the adOPTed algorithm was developed [8]. adOPTed applies an
exclusion transformation first if necessary to undo the impact of a formerly executed operation. Afterwards, an
inclusion transformation can be applied to reach a convergent state. However, such exclusion transformations
are not necessary for Simplified Solitaire since our algorithm is able to achieve intention preservation and are
therefore not further explored here. Apart from dOPT and adOPTed, there currently exists a plethora of
different OT algorithms [9] - some of which make use of exclusion transformations and some do not.

In the section above, we showed which requirements an algorithm has to meet in order to realize the properties
of the CCI model. Apart from guaranteeing causality preservation by processing incoming operations in a sensible
order, it must be capable of determining which operations must be transformed against each other in order to
guarantee intention preservation which in turn leads to convergence. We showed exemplary implementations of
transformation functions and how the priority of reaching the goal of the game can resolve conflicts between
operations where one invalidates the other when executed.

The latter is an example of how simple it is to find adequate priorities what makes operational transformation
particularly suitable for games. Apart from this benefit, in the following, we describe arguments supporting the
use of operational transformation in games.

5 Relevance in Games

Above we have shown that a game like Simplified Solitaire can be played in a collaborative way. Thus, the original
Solitaire can be collaboratively playable as well. However, there would be more special cases that have to be taken
into account in the OT functions. Solitaire can be categorized as a card-puzzle game but it also fits into other
categories. For example Solitaire is a multi-object game since it considers multiple cards and stacks at the same
time. Single-object games accordingly would be all the games that only focus on one object, e.g. racing games
where the player only controls a single vehicle. Additionally, Solitaire is not a turn-based game since the players
do not have to wait for an opponent after making a turn. A game such as chess on the other hand is turn-based.
After each turn every player has to wait for the turn of the other player. In Figure 6 these categories are used to
compare games and their ability to be played collaboratively. Each set of games is rated accordingly to its ability
to be played in a collaborative way. Furthermore, the figure contains some examples for games of each category.

10



Figure 6: Eligibility of games for collaboration

Multi-object, not turn-based games such as
Solitaire can be found in the upper right
corner. These games seem to be most
promising as stated by the + in the fig-
ure. The reason is that multiple play-
ers can invoke different operations which
may be merged into a single action through
techniques like operational transformation.
This may give two or more collaborative
players an advantage over a single player.
Considering the running example Alice
moves the Queen of Clubs and Bob the
Jack of Hearts. With operational trans-
formation both moves get merged into a single action. A single player in contrast has to do one move after
another. The observable advantage in such a situation is that the two collaborative players can be faster.

In single-object games this advantage can easily turn into a disadvantage. Considering the Pokémon example
introduced in the introduction (see Section 1), the Pokémon trainer (single controlled object) could for instance
make a horizontal or vertical step. If Alice intends to move rightwards whereas Bob wants to move upwards,
these two turns can be merged into a diagonal step7. On the other hand, if Alice still intends to move rightwards
whereas Bob wants to move leftwards, these two turns cannot be merged reasonably. Anyhow, this can happen
in multi-object games as well. For example, in Simplified Solitaire two players could simply want to move the
same card to different places. But since the players most likely have more choices, we assume that it does not
occur as often as in single-object games. A more detailed description of a similar problem and its solution in
Simplified Solitaire is described in Section 4.2. Priorities are used to decide which action is executed in the end.
Hence, the advantages of playing a single-object game collaboratively are limited. We state that by the 0 in
Figure 6.

Turn-based, multi-object games can be played collaboratively as well but only if each turn is played collabora-
tively by a team instead of a single player. For example Scrabble8 is played by two teams against each other and
each team consists of at least two players. In this situation each team can collaborate while constructing a word
with the letters of their team. This process can be enhanced with techniques like operational transformation to
gain the same advantages as described above. But once a single player ends their team’s turn, no more changes
can be applied by anyone. Considering operational transformation this may lead to further problems. An op-
eration that has been generated but was not executed at all sites before the turn ends represents one situation
that could lead to such problems. Because of that, we consider this category of games as partly collaboratively
playable again stated by the 0 in the figure.

Lastly, all games that are turn-based and only consider a single object can never profit from being played
in a collaborative way. Since only one action can be done per turn, it is impossible to apply a technique such
as operational transformation. Considering chess for example, once a player has made a move the turn ends
immediately. Hence, in no situation two operations can be merged in order to generate an advantage.

Games such as Simplified Solitaire could open up a new category of games, namely collaborative games. These
should not be mixed up with cooperative games. In cooperative games multiple players try to achieve one goal.
To do so, most of these games split up the main goal into subgoals. Considering Simplified Solitaire, Alice for
instance could focus on putting all cards onto the target stacks whereas Bob tries to uncover all hidden cards.
Since each player over time may become a specialist in her or his task, this might lead to an advantage over a
single player. In collaborative games the main goal is typically not subdivided. Every player attempts to reach
the main goal and in doing so the collaborative system itself leads to the advantage over non-collaborating players
for example by transforming or merging operations. This definition of collaborative games and its distinction
from cooperative games is only justified by the findings in this paper. Furthermore, while both terms are often
used as synonyms there also exist other definitions. For instance, in a game theory paper different aspects
are considered [10]: Cooperative games are distinct from collaborative games by the fact that all players of a
cooperative game get individual scores for reaching their subgoals whereas players of a collaborative game all

7Simplified example: Diagonal steps are not possible in the original Pokémon game.
8http://scrabble.hasbro.com

11

http://scrabble.hasbro.com


get the same score for reaching the main goal. We do not consider scoring at all in this paper but still both
definitions have in common that the main goal is split into subgoals when it comes to cooperative games. Hence,
both definitions could be merged.

As a last remark, we state that collaborative games can be developed by using existing operational transfor-
mation frameworks. This reduces the effort to create collaborative games significantly. An implementation of a
collaborative game was presented by Google9: Multiple players could try to solve one Rubik’s cube. For the im-
plementation they used the Google Realtime API10 which is based on operational transformation. Nevertheless,
most games do not consider collaborative play at all. One game that allows collaborative play is Age of Empires
II HD11, which is a strategy game in which a single army can be controlled by multiple players. However, since
it does not contain any techniques like operational transformation that feature is not advantageous unless the
players themselves come up with subgoals to organize their play (e.g. Alice controls the army whereas Bob
handles the reinforcement production). But per definition this makes it a cooperative game.

6 Conclusion

In this paper, we have explained operational transformation in context of games and presented how an OT
algorithm could be designed to guarantee properties of a consistency model. Simplified Solitaire has been used
as a case-study to show that operational transformation can be used in games as well as in any other collaborative
systems. Furthermore, we discussed the advantages and disadvantages of operational transformation in games.
In the end, we conclude that operational transformation can be beneficial in games of a specific category which
we call collaborative games (e.g. Simplified Solitaire). It can be considered as further work to find out if there
are other or better approaches to implement collaborative games.

In the introduction we mentioned Twitch plays Pokémon, an experiment that allowed a million users to
play the same game over Twitch12. It turned out that the Pokémon games are not the best games to be played
collaboratively, although Twitch plays Pokémon shows that people enjoy playing games together in a collaborative
way. Hence, the number of collaborative games will probably grow in future and operational transformation is
one approach which could facilitate the collaborative aspect of these games.

9A presentation by Brian Cairns and Cheryl Simon in 2013 during a Google Developers I/O session: https://www.youtube.com/

watch?v=hv14PTbkIs0
10https://developers.google.com/google-apps/realtime/overview
11https://www.ageofempires.com
12Streaming platform: https://www.twitch.tv/

12

https://www.youtube.com/watch?v=hv14PTbkIs0
https://www.youtube.com/watch?v=hv14PTbkIs0
https://developers.google.com/google-apps/realtime/overview
https://www.ageofempires.com
https://www.twitch.tv/


References

[1] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware systems,” in ACM SIGMOD Record, vol. 18,
pp. 399–407, ACM, 1989.

[2] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Communications of the
ACM, vol. 21, no. 7, pp. 558–565, 1978.

[3] D. Li and R. Li, “Preserving operation effects relation in group editors,” in Proceedings of the 2004 ACM
Conference on Computer Supported Cooperative Work (CSCW), pp. 457–466, ACM, 2004.

[4] R. Li and D. Li, “A new operational transformation framework for real-time group editors,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 18, no. 3, pp. 307–319, 2007.

[5] R. Li and D. Li, “Commutativity-based concurrency control in groupware,” in 2005 International Conference
on Collaborative Computing: Networking, Applications and Worksharing, p. 10ff., 2005.

[6] C. Sun, Y. Zhang, X. Jia, and Y. Yang, “A generic operation transformation scheme for consistency main-
tenance in real-time cooperative editing systems,” in Proceedings of the international ACM SIGGROUP
conference on Supporting group work: the integration challenge, pp. 425–434, ACM, 1997.

[7] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving convergence, causality preservation, and
intention preservation in real-time cooperative editing systems,” ACM Transactions on Computer-Human
Interaction (TOCHI), vol. 5, no. 1, pp. 63–108, 1998.

[8] D. N.-R. Matthias Ressel and R. Gunzenhuser, “An integrating, transformation-oriented approach to con-
currency control and undo in group editors.,” in Proceedings of the 1996 ACM conference on Computer
supported cooperative work, pp. 288–297, ACM, 1996.

[9] S. Kumawat and A. Khuneta, “A survey on operational transformation algorithms: Challenges, issues and
achievements,” International Journal of Computer Applications, vol. 3, no. 12, pp. 30–38, 2010.

[10] J. P. Zagal, J. Rick, and I. Hsi, “Collaborative games: Lessons learned from board games,” Simul. Gaming,
vol. 37, no. 1, pp. 24–40, 2006.

13


	Introduction
	Simplified Solitaire
	Definition
	Operations

	Consistency Models
	The CC Model
	The CCI Model
	Further Consistency Models

	Operational Transformation
	OT Algorithm
	OT Functions

	Relevance in Games
	Conclusion

