
Jan Haltermann

Liveness in Transactional Memory

29.11.2017

Seminar: Software Transactional Memory

Motivation - Why do we need Liveness?

2

Process 푝

Process 푝

op op op op op

op op op op op

…

Correctness/Safety

Desired behavior

Content

3

 Preliminaries

 How can liveness be defined?

 Liveness and correctness criteria in a STM

 Summary

Preliminaries

Preliminaries – System Model

5

 N asynchronous processes 푝 , … ,푝
 Shared objects/memory for communication

 using base objects accessible via atomic operations

 Process 푝 accesses shared object 퐴
 Processes are sequential (no parallel operations)

A[j] = 3 + 2
Process 푝

Time

1 … 3 4 … 6Shared object 퐴
퐴 0 … 퐴 푗 … 퐴[푚]

Operation 표푝

Transaction 푇

Preliminaries – Transactional Memory

6

Operation of process 푝 on shared variable 푥
 푥. 푟푒푎푑 : Read current value of x

 Returns value v or 푎푏표푟푡

 푥.푤푟푖푡푒 (푣): Write value v on x
 Returns 표푘 or 푎푏표푟푡

 푡푟푦퐶 :Try to commit
 Returns 푐표푚푚푖푡 or 푎푏표푟푡

Process 푝
푥. 푟푒푎푑 → v 푥.푤푟푖푡푒 (푣) t푟푦퐶

퐶

Preliminaries – Transactional Memory

7

 Transaction: Sequence of reads and writes followed by a commit or abort
 푇 < 푇 :푇 commits or aborts before first event of 푇 (푇 preceds 푇)
 Crashed transaction: stops taking operations in infinite history

 Waiting infinitely long for a response unequal to crashing

 Parasitic transaction: after point t, no 푡푟푦퐶 request
 Correct transaction: Neither crashed nor parasitic

Process 푝

Process 푝
푥.푤푟푖푡푒 (1)

푥.푤푟푖푡푒 (1)

푥.푤푟푖푡푒 (1) 푥.푤푟푖푡푒 (1) 푥.푤푟푖푡푒 (1)

…
…

푡

푡

Preliminaries – Transactional Memory

8

 History: longest subsequence of an execution on a shared object
 Complete history: Every transaction ends with commit or abort
 Sequential history: No two transactions are concurrent
 Fair history: add a 푐푟푎푠ℎ event to all crashing processes

Process 푝

Process 푝
푥.푤푟푖푡푒 (1)

푥.푤푟푖푡푒 (1)

푥.푤푟푖푡푒 (1) 푥.푤푟푖푡푒 (1) 푥.푤푟푖푡푒 (1)

Process 푝
푥.푤푟푖푡푒 (1) 푐푟푎푠ℎ

…
…

Preliminaries – Transactional Memory

9

 Legal transaction T: all reads of T and all transactions that precede T return valid values
(that are currently stored in shared object
 Process 푝 makes progress in fair history H, if H contains infinitely many 퐶

 Implies eventually all operations in transaction are not aborted

 Process 푝 runs alone: from point t on, no other process takes steps in execution

…
Process 푝

Process 푝
푥. 푟푒푎푑 0

푥.푤푟푖푡푒 (1)
퐶

퐴

푥. 푟푒푎푑 0

푥.푤푟푖푡푒 (1) 푥.푤푟푖푡푒 (2)
퐶

푥. 푟푒푎푑 1

퐶
푥. 푟푒푎푑 2

푥. 푟푒푎푑 (1) 푐푟푎푠ℎ

Liveness for STMs

10

Local Progress

11

 Every correct process makes progress in a fair history
 Or there are no correct processes

 Stronger property than wait-freedom
 Wait-freedom: Every operation receives a response
 Introduced by Herlihy in 1991

Process 푝

Process 푝
푥. 푟푒푎푑 0

푥.푤푟푖푡푒 (1)
퐶

퐴

푥. 푟푒푎푑 0

푥.푤푟푖푡푒 (1)

푥. 푟푒푎푑 1

푥.푤푟푖푡푒 (0)
퐶

퐴
푥. 푟푒푎푑 1

푥.푤푟푖푡푒 (1)

…
t2.1

t1.2t1.1

t2.2

Global Progress

12

 At least one correct process makes progress in a fair history
 Or there are no correct processes

 Stronger property than non-blocking
 Blocking-freedom: Some operation receives a response
 Introduced by Herlihy in 1991

 Weaker than local progress

Process 푝

Process 푝
푥. 푟푒푎푑 0

푥.푤푟푖푡푒 (1)
퐶

퐴

푥. 푟푒푎푑 0

푥.푤푟푖푡푒 (1) 푥. 푟푒푎푑 1

푥.푤푟푖푡푒 (0)
퐶

퐴

푥. 푟푒푎푑 1

푥.푤푟푖푡푒 (1) …
t2.1

t1.2t1.1

t2.2

Solo Progress

13

 Every correct process makes progress in a fair history, if it runs alone
 Or there are no correct processes

 Stronger property than obstruction-freedom
 Obstruction-freedom: operations executed isolated receive result
 Introduced by Herlihy et al. in 2003

 Weaker then global progress

Process 푝

Process 푝
푥. 푟푒푎푑 0

푥.푤푟푖푡푒 (1)
퐶

퐴

푥. 푟푒푎푑 0

푥.푤푟푖푡푒 (1) 푥.푤푟푖푡푒 (2)
퐶

푥. 푟푒푎푑 1

…퐶
푥. 푟푒푎푑 2

푥. 푟푒푎푑 (1) 푐푟푎푠ℎ

Overview of Liveness Properties

14

1 = local progress, 2 = wait-freedom, 3 = global progress,
4 = lock-freedom, 5 = solo progress, 6 = obstruction-freedom

Liveness and correctness conditions in a STM

15

Correctness Conditions

16

 History H is opaque, iff there is an equivalent sequential history 퐻 and all transactions in
퐻 are legal
 Introduced by Guerrauoi and Kapalka in 2007

 History H is strict serializable, iff there is an equivalent sequential history 퐻 and all
committed transactions in 퐻 are legal
 Introduced by Papadimitriou in 1979

Process 푝

Process 푝
푥. 푟푒푎푑 0

푥.푤푟푖푡푒 (1) 퐶

푥. 푟푒푎푑 1 퐴

Non-existence of opacity and local progress

17

For every fault-prone system there does not exists a STM-implementation
that ensures local progress and opacity.

Theorem 1Theorem 1
For every fault-prone system there does not exists a STM-implementation
that ensures local progress and opacity.
For every fault-prone system there does not exists a STM-implementation
that ensures local progress and opacity.

Theorem 1

Non-existence of opacity and local progress

18

 Proof idea:
 Assume local progress and opacity ensured
 Construct strategy for two processes resulting in history violating local progress

 For crash-prone systems
 (For parasitic-prone systems)

 Assumption:
 Operations of a transaction not known in advance
 Fault prone system

 Need to show:
 Every correct process makes progress
 Any resulting complete history is opaque

Non-existence of opacity and local progress - Strategy

19

Process 푝

Process 푝

Non-existence of opacity and local progress - Proof

20

 Local progress ensured ⇔ all correct processes contain infinitely many commits
 Show that strategy produces infinite history

 By nontermination of strategy
 Strategy terminates, iff 푡푟푦퐶 returns 퐶

Process 푝

Process 푝

Non-existence of opacity and local progress - Proof

21

Process 푝

Process 푝
푥. 푟푒푎푑 v’

푥.푤푟푖푡푒 (푣 + 1)
퐶

퐶푇

푇
푥. 푟푒푎푑 v’’

푥.푤푟푖푡푒 (푣 + 1)

Impossibility of opacity and local progress - Proof

22

1. Possible real-time ordering

2. Possible real-time ordering

⇒ Strategy will never terminate, since both real time orderings not valid

푥.푤푟푖푡푒 (푣 + 1)
퐶푇

푥. 푟푒푎푑 v’’푥. 푟푒푎푑 v’
퐶푇

푥.푤푟푖푡푒 (푣 + 1)

푥.푤푟푖푡푒 (푣 + 1)
퐶푇

푥. 푟푒푎푑 v’’ 푥. 푟푒푎푑 v’
퐶푇

푥.푤푟푖푡푒 (푣 + 1)

Process 푝

Process 푝

푥. 푟푒푎푑 v’

푥.푤푟푖푡푒 (푣 + 1)
퐶

퐶푇

푇
푥. 푟푒푎푑 v’’

푥.푤푟푖푡푒 (푣 + 1)

Impossibility of opacity and local progress - Proof

23

 Observation: In infinite execution, 푝 doesn´t make progress
 If 푝 does not crash ⇒ contradiction to local progress (since 푝 makes no progress)
 푝 crashes, iff 푡푟푦퐶 never returns 퐶
 푝 will eventually make progress ⇒ 푝 cannot be crashed

Process 푝

Process 푝

Generalized result – further definitions

24

 Non-blocking liveness: progress for any correct process running alone
 Local progress, global progress and solo progress are non-blocking

 Biprogressing: at least 2 correct processes makes progress
 Local progress is biprogressing
 Global progress and solo progress does not necessary ensure biprogressing

1 = local progress,
2 = wait-freedom,
3 = global progress,
4 = lock-freedom,
5 = solo progress,
6 = obstruction-freedom
5 = non-blocking
7 = biprogressing

Generalized result

25

For every fault-prone system and every STM-liveness property L that is non-
blocking and biprogressing there is no STM-implementation that ensures L
and strict-serializability.

Theorem 2Theorem 2
For every fault-prone system and every STM-liveness property L that is non-
blocking and biprogressing there is no STM-implementation that ensures L
and strict-serializability.

For every fault-prone system and every STM-liveness property L that is non-
blocking and biprogressing there is no STM-implementation that ensures L
and strict-serializability.

Theorem 2

Summary

26

 Formal definition of liveness-conditions for STM
 Local progress
 Global progress
 Solo progress

 Proven that opacity and local progress cannot be guaranteed in STM

 Options for STMs ensuring liveness and correctness conditions:
 Weaker liveness criteria (global progress and opacity work together (e.g. in OSTM)
 Static processes (operations known in advance)
 Assume fault-free system with deferred-update

Sources

27

 Bushkov, V., Guerraoui, R.: Liveness in Transactional Memory. In: Transactional Memory.
Foundations, Algorithms, Tools, and Applications. pp. 32–49. Springer, Cham (2015).
 Herlihy, M.P.: Wait-free synchronization. Toplas. 13, 124–149 (1991).
 Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N.: Software transactional memory for

dynamic-sized data structures. Proc. twenty-second Annu. Symp. Princ. Distrib. Comput. -
Pod. ’03. 92–101 (2003).
 Guerraoui, R., Kapałka, M.: Opacity : A Correctness Condition for Transactional Memory.

Tech. Rep. LPD-REPORT-2007-004, EPEL. (2007).
 Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM. 26, 631–

653 (1979).
 K. Fraser. Practical Lock-Freedom. PhD thesis, University of Cambridge, 2003.

Backup slides

28

Wait-freedom incomparable to global progress

29

1 = local progress,
2 = wait-freedom,
3 = global progress,
4 = lock-freedom,
5 = solo progress,
6 = obstruction-freedom

Process 푝

Process 푝
푥. 푟푒푎푑 0

퐴
푥.푤푟푖푡푒 (1)

푥. 푟푒푎푑 0

퐴
푥.푤푟푖푡푒 (1)

…
푥. 푟푒푎푑 0

퐴
푥.푤푟푖푡푒 (1)

푥. 푟푒푎푑 0

퐴
푥.푤푟푖푡푒 (1)

Wait-freedom incomparable to global progress

30

1 = local progress,
2 = wait-freedom,
3 = global progress,
4 = lock-freedom,
5 = solo progress,
6 = obstruction-freedom

Process 푝

Process 푝
푥. 푟푒푎푑 0

퐶
푥.푤푟푖푡푒 (1) …

푥. 푟푒푎푑 0 푥.푤푟푖푡푒 (1)

푥. 푟푒푎푑 0

퐶
푥.푤푟푖푡푒 (1)

Generalized result

31

 Assume crash-prone system

 Proof structure:
 Show that presented strategy produces infinite history

 Same argument as before
 Only different: Obtained history not strict serializable

 Show that both processes are correct
 푝 cannot crash
 푝 crashes iff 푝 receives infinitely many 퐴². (impossible due to non-blocking)

 Show contradiction to biprogressing
 Both processes correct
 푝 makes progress, 푝 does not

