
JCrasher: an automatic robustness tester for
Java

A report as part of the seminar Software testing

Theo Harkenbusch

Paderborn University, Institute for Computer Science,
33102 Paderborn, Germany

theohark@mail.upb.de

Abstract. Software testing has been around for over 40 years now. It
is the most common way to uncover defects in a program. If a program
behaves correctly even under invalid inputs, it is said to be robust. Pro-
gram code can be tested for this property with the help of robustness
testing. This paper presents an accessible overview of a particular ro-
bustness testing tool called JCrasher, which produces test cases for the
popular Java testing framework JUnit. JCrasher is designed to automati-
cally test the robustness of Java code. It tries to make the program under
test throw undeclared runtime exceptions, causing it to terminate force-
fully. This is done by analysing the type information of public methods
and constructing calls to those methods providing random but syntacti-
cally valid data as parameters. To construct these well-typed parameter
combinations a special data structure is used. JCrasher also makes use
of novel heuristics to determine whether an exception it caused is the
result of a bug or if it indicates the violation of some specified precon-
dition. Furthermore, it also includes a unique state-resetting mechanism
to ensure that tests do not run on states modified by previous tests.

Keywords: Software Testing, Test Case Generation, Random Testing, Java,
State Re-initialization

1 Introduction

On the 4th of June 1996, the maiden flight of the European Space Agency’s new
Ariane 5 rocket ended in an expensive disaster. After only 37 seconds into the
mission, the rocket exploded midair [7]. Although no one was hurt during the
incident, scientific equipment valued at around 500 million dollars was destroyed
[8]. After a thorough investigation, the inquiry board reported a software excep-
tion as cause of the incident. During the conversion of a floating point number,
“a value greater than what could be represented by a 16-bit signed integer” was
assigned to a 16-bit integer [7]. The corresponding program code was not able
to cope with an internal function call returning an unexpected high value, thus
resulting in the crash of the rocket. Although the method that caused the excep-
tion could have been guarded against such a condition, it was not. The Ariane



2 Theo Harkenbusch

5 incident can be seen as an extremely costly example for the demand of robust
software.

Software robustness can be defined as “the degree to which a system or
component can function correctly in the presence of invalid inputs or stressful
environmental conditions” according to the IEEE standard glossary of software
engineering terminology [6]. With JCrasher, Csallner and Smaragdakis propose
a way to test the (software) robustness of Java applications automatically with-
out the need of supervision [3]. To achieve this level of automation, a random
testing approach is incorporated. JCrasher produces random inputs which are
supplied to public methods of the program under test. As JCrasher tries to get
the program under test to crash by throwing an undeclared runtime exception,
it is crucial that the randomly generated data is also type-correct in terms of
Java semantics as otherwise its generated test cases could not be compiled. To
ensure the construction of correctly typed inputs, a special data structure is
utilized (Section 2.2). The authors note that JCrasher has been designed with
practicality in mind as it outputs test cases for the popular Java testing frame-
work JUnit. These test cases can easily be integrated into a typical industrial
development cycle where an incremental built software project is tested during
night time [3].

Csallner and Smaragdakis are, however, not the first to propose such an au-
tomatic testing approach based on the principles of random testing (Section 3).
Nevertheless, JCrasher offers some novel concepts that are noteworthy. For in-
stance, it incorporates a unique heuristic function which helps to decide if a
caught Java exception was raised because of a genuine bug or if it is merely the
result of a precondition violation (Section 2.3). Csallner and Smaragdakis also
propose a new technique to ensure that previously run test cases will not affect
subsequent test cases. This is done with the help of a special re-initialization
strategy for static data which will be discussed later on.

The following sections will explain the general functionality of JCrasher in de-
tail. Special emphasis will lay on the proposed novelties. Note that the following
concepts are based on the original JCrasher paper by Csallner and Smaragdakis
if not stated otherwise.

2 Architecture of JCrasher

JCrasher tests the robustness of Java program code. Hence, it requires a Java
program as input—specifically, its bytecode. As output it produces numerous
JUnit test cases. It is not uncommon to generate up to two million test cases in
a five hour time span, depending on the complexity of the Java program under
test [3]. By auto-generating persistently saved JUnit test cases, JCrasher allows
for human inspection of the tests. This means that developers can cherry pick
certain test cases that are particularly successful and integrate them into their
regular testing suite. The next section will give insight on how these test cases
are generated.



JCrasher 3

2.1 Test Case Generation

With the help of Java reflection, JCrasher scans the provided bytecode for meth-
ods with the access modifier set to public. The robustness of public methods is
something particular interesting to test against, as public methods can be seen
as way to interact with the world around the program and are thus influenced by
external parameters [3]. JCrasher is looking for values which it can supply to the
found public methods as parameters in order to crash the target program. If said
method then crashes, i.e. throws an undeclared runtime exception, it follows that
it is not robust. It would be the responsibility of the callee to enforce possible
preconditions regarding the provided parameters [3]. The preferred way to do
this in Java is to throw an IllegalArgumentException to let the the caller
know that the method does not know how to deal with the provided parameters
[3].

For each declared method f that JCrasher finds, it will produce a random
sample of executable test cases. Each of these generated test cases will pass a
different parameter combination to f. For example if we want to test a method
public void setAge(int age), we could construct numerous test cases
and provide the method with different integer values. In theory we could con-
struct 232 possible test cases for this method alone, as this is the space of possi-
ble integer values in the Java programming language [5]. The number of possible
tests is, therefore, extremely huge and JCrasher can only test so much of it.
However, JCrasher can work autonomously and is, therefore, very cheap to use
[3]. It can be used to assist other testing techniques and it using it does not
introduce any disadvantages.

Java is a programming language with object-orientated features, therefore,
it is possible that a method not only expects primitive data types (boolean,
byte, char, int, float, double, long, short [5]) as input but also Java
objects. Consequentially, JCrasher must be able to construct the needed Java
objects in order to test found methods. This is why JCrasher keeps track of how
to construct objects of different types by using a special data structure: The
parameter-graph.

2.2 Parameter-Graph

The parameter-graph is an in-memory data structure that represents the parameter-
space of the methods in the input program. It is essentially a mapping from Java
types to either methods returning that particular type or to some pre-set values
[3]. An example for a pre-set value would be 1, 0 and -1 for integer values.
Additionally, null is a reasonable substitute for any reference type and can be
used for any object [3]. JCrasher uses the parameter-graph to decide how many
and which test cases it generates for a given method.

Different parameter combinations, i.e. inputs, for a certain method are con-
structed by traversing the parameter-graph.

Suppose JCrasher wants to test method m of class X. Further suppose that
m may take an Java object of type O1 and returns an object of type R. Method



4 Theo Harkenbusch

m’s signature looks like this: X.m(O1) returns R. JCrasher infers from this
that it needs to know how to construct an object of type O1 to successfully test
method m. Additionally, JCrasher infers from the return type that method X.m
is a valid way to construct objects of type R [3]. This knowledge is kept inside a
graph structure.

A benefit of using graph-like structures is, they are rather easy to visualize.
Figure 1 illustrates how JCrasher chooses a suitable parameter-combination for
a method. The root element of the graph contains the method we want to test,
here it is method f of class DemoClass. An edge in the parameter-graph, from
a type to a method or an explicit value, denotes a way to construct a value of this
specific type. Multiple edges from the same source simply depict alternative ways
to construct values. For instance, the three outgoing edges from int mean that
JCrasher can select one of the three values -1, 0 and 1 as an actual parameter.

Fig. 1. Traversable parameter-graph to create different parameter combinations [3, p.
1030].

Essentially, traversing the parameter-graph means creating different param-
eter combinations for a certain method. This particular graph in Figure 1 yields
the following possible combinations: f(null, -1), f(null, 0), f(null,
1), f(new A(null), -1), . . . , f(new B().m(1), 1).

JCrasher can derive test cases based on these parameter-combinations. Each
parameter-combination gets translated into one test case. Figure 2 shows one
of the possible test cases which could be generated by traversing the above
parameter-graph. First, an object of class DemoClass is generated by its default
constructor. Afterwards, the method under test, f, is called. Note that, every
single test case is wrapped in a try-catch block.



JCrasher 5

public void test1() {
try {

//test case
DemoClass c = new DemoClass();
c.f(new A(null), -1);

}
catch (Exception e) {

dispatchException(e);
}

}

Fig. 2. Derived test case from the parameter-graph in Figure 1. The actual call to the
method along with the parameter-combination f(new A(null), -1) [3, p. 1032].

These test cases can be executed with JUnit. During the execution, JUnit catches
every possible Java Exception that the method under test may throw. It simply
dispatches the caught exceptions forward to the JCrasher runtime. Based on its
novel heuristic functions, JCrasher will decide if the exception may indicates a
bug in the method under test or is possibly caused by a precondition violation.
The exception is then reported back to JUnit (which flags the test case as failed)
or suppressed, respectively [3]. The following section will describe the heuristics
which these decisions are based upon.

2.3 Heuristic Approach

JCrasher uses a heuristic approach to differentiate whether a caught exception
during the test execution was caused by a genuine bug or merely by violating pos-
sible preconditions of the method under test. The reason is that JCrasher wants
to reduce it’s number of reported false positives, i.e. test cases that are falsely
flagged as failing when in reality no robustness problem is present. The approach
is based upon the Java sub-class hierarchy of java.lang.Throwable [3]. The
main idea is to use the class which the given exception extends as a guiding rule.
Figure 3 illustrates this by annotating the class-hierarchy of Throwable with
recommendations how to deal with this kind of exception.

An Error always denotes a serious problem, e.g. when the JVM (Java Virtual
Machine) runs out of memory space. Thus, errors should never be caught. And,
indeed, the generated JUnit test cases only catch Exceptions and never an
Error as seen in Figure 2.

Exceptions can be divided into two groups in Java. The first group being
so called checked exceptions. These exceptions have to be declared by a special
throws statement in the method’s signature. The most prominent example is
the basic IOException which indicates problems with the input or output; it
often occurs when (miss-)handling files. If JCrasher encounters a checked excep-
tion, it assumes that it was thrown to enforce some kind of precondition. Checked



6 Theo Harkenbusch

Fig. 3. The Java sub-class hierarchy of java.lang.Throwable is used to determine
if a caught exception was raised by a robustness bug [3, p. 1033].

exception are therefore never reported back to JUnit. They are suppressed and
not considered to be caused by a robustness bug. Figure 4 illustrates this with
a fictive method that would throw a checked exception if the given integer pa-
rameter was less than 10.

// testing with i = 5;
public void method(int i) throws CustomException {

if (i < 10)
throw new CustomException();

// ...
}

Fig. 4. Example of a non-bug according to the heuristics as the method under test
would throw a checked exception of type CustomException when provided with
parameter i = 5.

The second group consists of unchecked exceptions which are runtime ex-
ceptions. In contrast to checked exceptions, runtime exceptions can be declared
by methods or constructors but a declaration is not obligatory. Any method
may potentially throw an unchecked exception [3]. Unchecked exceptions can
again be subdivided into two groups (see the bottom of Figure 3). The general



JCrasher 7

idea is that unchecked exceptions of the first group are “typically thrown by
low-level functions mostly implemented by the JVM” while the second group
indicates a violation in regards to some precondition. Examples of the first
group of unchecked exceptions are ArrayIndexOutOfBounceException and
ArithmeticException. If an unchecked exception of this group is dispatched
to JCrasher, it will be reported to JUnit as a potential robustness problem. Even
if the tested method f did not throw the exception directly but called another
method which then threw the exception, f is to blame for not catching and
handling it [3]. Consider Figure 5 for an example of what JCrasher considers a
robustness problem.

// testing with pos = 0;
public void method(int pos) {

int[] myArray = {2, 4, 8};
// ...
myArray[pos]; // ArrayIndexOutOfBoundsException

}

Fig. 5. Example of a bug according to the heuristics as the method under test would
thrown an unchecked ArrayIndexOutofBoundsException when provided with pa-
rameter pos = 0.

However, if JCrasher encounters an unchecked exception of the second group,
it usually indicates that the used parameters violate the method’s precondition.
Examples are IllegalArgumentException and IllegalStateException
which are both considered Java best practise for reporting problems with the
provided inputs [3]. Consequentially, JCrasher’s heuristics tend to suppress these
exceptions as they are usually not caused by program bug. Please note that there
were a few special cases mentioned in the original JCrasher paper that depend
on an analysis of the call-stack [3]. Due to the restricted nature of this report,
we will not discuss them here.

2.4 Static State Resetting

When multiple test cases are executed sequentially, there is a chance of unwanted
interdependencies between the test cases. All test cases that are executed in one
single JVM instance share the same class object at runtime (see Figure 6). If one
of the test cases now modifies the static state of this shared class object, all other
instances of this class that run in the same JVM reflect this modification. This
is highly undesirable since the reason of a failing test case can not be determined
precisely any more [3]. A preceding test case might have tinkered the static state
which in turn caused the test case to fail even in the absence of a robustness
critical code.

There are three possible solutions to this problem.



8 Theo Harkenbusch

Fig. 6. All test cases use the same class object at runtime as there is only a single JVM
instance.

The most naive solution would be to simply use multiple JVMs in order to
avoid the interdependencies. However, this approach involves the expensive task
of starting, loading and tearing down each individual JVM instance which is
why the other approaches seem more reasonable [3].

The second approach is to let each test case operate on a separate copy of a
class object by using different class loaders. This way no test case will modify
the static state of a class object another test can access.

Nevertheless, the solution that JCrasher actually makes use of, is the third
one: “Modifying the code under test at the bytecode level to expose static re-
initialization routines, which get called after the end of each test case” [3].

They conducted multiple experiments on the performance of each proposed
solutions and found out that use of multiple class loaders is approximately twice
as fast as the naive approach. However, the class loading approach was about 20
times slower compared to the re-initialization [3]. For this very reason, the follow-
ing paragraph will only concentrate on the technicalities of the re-initialization
technique.

The idea is to imitate the original JVM initialization progress and re-initialize
already used classes after each test execution [3]. For this to work, the loaded
classes are manipulated at bytecode level. In Java the method <clinit>()
contains the compiled variable initializer for static fields of a class. This method
gets called by the JVM only at the beginning when the class needs to be loaded.
It can not be called from regular Java code as the method name contains square
brackets, which are invalid characters. The approach replaces the JUnit class
loader with a custom one. Essentially, the idea is to create a copy of that method
which is callable by custom Java code. The original static initializer method is
then modified to call the copy and afterwards notify JCrasher to add this class
to a list of classes that are flagged for re-initialization [3]. After each test case



JCrasher 9

execution, JCrasher calls the copied method for each class in that list again.
This reset the static variables of the loaded classes back to the value they would
have been when they were originally initialized.

It is noteworthy that this approach, although really fast, differs from the
original Java initialization. The order of the class re-initialization depends on the
order of the original initialization. This can potentially lead to some problems
especially if there happens to be a cyclic dependency between static data of
different classes. However, Csallner and Smaragdakis note that the odds of this
happening are highly unlikely [3].

3 Related Work

Software testing has been around for a long time now. It became an essential
part in the work routine of software engineers. Therefore, it exists a vast amount
of different ideas and techniques to improve the testing process. In the original
JCrasher paper some work that is most similar to JCrasher has already been dis-
cussed. This section will therefore briefly present some newer testing techniques
that somehow are related to the approach presented in this report instead.

Randoop (“random tester for object-orientated programs”) is a tool that
generates test cases for Java programs by using a so-called feedback-directed
random testing approach [9]. This approach is heavily motivated by random
testing. However, it enhances the normal random testing approach by using
feedback it gathers from executing tests with freshly generated inputs in order
to avoid producing illegal and redundant inputs [10]. When a new possible input
for a method is generated, it is automatically executed and checked against
optionally user-provided contracts. Randoop will then output two test suits.
The first one includes test cases that violate the provided contracts while the
second test suits contains regression tests that do not violate contracts and can
be used to discover deviant behaviours of two versions of the same software
[9]. By using runtime-feedback Randoop can avoid generating redundant inputs
which can occur when following a normal random testing approach. The authors
of Randoop claim that they found severe flaws in commonly used commercial
software as well as in open-source projects [10].

Palulu is another tool aimed to simplify software testing. It tries to tackle
the problem that input generators often produce more illegal than helpful inputs
when not provided with a formal specification. The combination of dynamic
analysis and random testing alongside an example execution of the program
under test yields a model of legal call sequences. This model influences a random
input generator to produce more legal but still diverse inputs [1].

4 Conclusion

JCrasher aims to uncover robustness related bugs in Java programs. It pro-
duces JUnit test cases that test public accessible methods by providing it with
randomly generated but type correct inputs. JCrasher uses a special graph-like



10 Theo Harkenbusch

structure, the parameter-graph, to construct these random and syntactically cor-
rect values efficiently after analysing the bytecode of the program under test. If
during the execution of these test cases an exception is raised, the exception
is evaluated according to a novel heuristic function. Based on the type of the
exception JCrasher tries to determine whether the cause of the exception was a
(robustness) bug or if the generated test case possibly violated some unknown
preconditions. Additionally, JCrasher incorporates a unique static state-resetting
mechanism that prevents test cases from introducing unwanted side-effects for
subsequent test cases. Since its realease, JCrasher has been gradually improved
and the authors presented several follow-up tools in the years after [2] [4].

References

[1] S. Artzi et al. “Finding the needles in the haystack: Generating legal test
inputs for object-oriented programs”. In: (2006).

[2] C. Csallner and Y. Smaragdakis. “Check’n’crash: combining static check-
ing and testing”. In: Proceedings of the 27th international conference on
Software engineering. ACM. 2005, pp. 422–431.

[3] C. Csallner and Y. Smaragdakis. “JCrasher: an automatic robustness tester
for Java”. In: Software — Practice & Experience 34 (11) (2004), pp. 1025–
1050.

[4] C. Csallner, Y. Smaragdakis, and T. Xie. “DSD-Crasher: A hybrid analysis
tool for bug finding”. In: ACM Transactions on Software Engineering and
Methodology (TOSEM) 17.2 (2008), p. 8.

[5] J. Gosling et al. The Java language specification. Addison-Wesley Profes-
sional, 2000.

[6] “IEEE Standard Glossary of Software Engineering Terminology”. In: IEEE
Std 610.12-1990 (1990), pp. 1–84.

[7] J.-L. Lions et al. Ariane 5 flight 501 failure report by the inquiry board.
1996.

[8] R. A. Maxion and R. T. Olszewski. “Improving software robustness with
dependability cases”. In: Digest of Papers. Twenty-Eighth Annual Inter-
national Symposium on Fault-Tolerant Computing (Cat. No. 98CB36224).
IEEE. 1998, pp. 346–355.

[9] C. Pacheco and M. D. Ernst. “Randoop: feedback-directed random testing
for Java”. In: OOPSLA Companion. 2007, pp. 815–816.

[10] C. Pacheco et al. “Feedback-directed random test generation”. In: Proceed-
ings of the 29th international conference on Software Engineering. IEEE
Computer Society. 2007, pp. 75–84.


