Ariadne: Analysis for Machine Learning Programs

Fabian Schiebel

Seminar: Advanced Techniques in Software Analysis

University of Paderborn

06.07.2020

Example*: Image recognition

```
import tensorflow as tf
def conv_net(x_dict, n_classes, dropout, reuse,
                                    is_training):
    with tf.variable_scope('ConvNet', reuse=reuse):
        x = x_dict['images']
        # MNIST data input is a 1-D vector of
            784 features (28*28 pixels)
        # Reshape to match picture format
            [Height x Width x Channel]
        # Tensor input become 4-D:
            [Batch Size, Height, Width, Channel]
        x = tf.reshape(x, shape=[-1, 28, 28, 1])
```

Example*: Image recognition

```
import tensorflow as tf
. . .
def conv_net(x_dict, n_classes, dropout, reuse,
                                     is_training):
    with tf.variable_scope('ConvNet', reuse=reuse):
        x = x_dict['images']
        # MNIST data input is a 1-D vector of
            784 features (28*28 pixels)
        # Reshape to match picture format
            [Height x Width x Channel]
        # Tensor input become 4-D:
            [Batch Size, Height, Width, Channel]
        x = tf_{reshape}(x, shape = [-1, 28, 28, 1])
        . . .
```

Approach

We need

- ► A type system for tensors
- ► A dataflow analysis
 - Use the WALA framework

Approach

We need

- ► A type system for tensors
- ► A dataflow analysis
 - ► Use the WALA framework

Approach

We need

- ► A type system for tensors
- ► A dataflow analysis
 - Use the WALA framework

The Type System

- Python types π :
 - Basic types: Int, channel ...
 - Record types: Dictionaries
 - Function types
- ▶ Tensor types: $[d_1, \ldots, d_n \text{ of } \pi]$

The Type System

Example*

The Type System

Example*

Modeling Python in WALA Workflow

Modeling Python in WALA Workflow

 $Python\ code \longrightarrow WALA\ CAst - WALA \rightarrow WALA\ IR$ Analysis

Modeling Python in WALA Workflow

Creating the CAst

Creating the CAst

Creating the IR

Why do we need to create the IR?

- Custom CAst nodes
- Custom semantics of existing nodes

Creating the IR

Why do we need to create the IR?

- Custom CAst nodes
- Custom semantics of existing nodes

```
class Foo:
    def foo(self, a):
         . . .
x = Foo()
x.foo(42)
y = x.foo
y(42)
```

```
class Foo:
    def foo(self, a):
         . . .
x = Foo()
x.foo(42)
y = x.foo
y(42)
Foo.foo(x, 42)
```

```
class Foo:
    def foo(self, a):
x = Foo()
x.foo(42)
y = x.foo
y(42)
Foo.foo(x, 42)
x.foo = Foo.foo
x.foo(x, 42)
```

Workflow

Workflow

Goal: Precise dataflow analysis

- ► Modeling of *Python* semantics
- ► Modeling of *TensorFlow* API
- Helper Analyses

Goal: Precise dataflow analysis

- ► Modeling of *Python* semantics
- ► Modeling of *TensorFlow* API
- Helper Analyses

Pointer Analysis*

Which variables alias?

```
import tensorflow as tf
mnist = input_data.read_data_sets("/tmp/data/")
def conv_net(x_dict, n_classes, dropout, reuse,
                                    is_training):
    with tf.variable_scope('ConvNet', reuse=reuse):
        x = x_dict['images']
        # MNIST data input is a 1-D vector of
        # 784 features (28*28 pixels)
        x = tf.reshape(x, shape=[-1, 28, 28, 1])
         . . .
```

Pointer Analysis*

Which variables alias?

```
import tensorflow as tf
. . .
mnist = input_data.read_data_sets("/tmp/data/")
def conv_net(x_dict, n_classes, dropout, reuse,
                                    is_training):
    with tf.variable_scope('ConvNet', reuse=reuse):
        x = x_dict['images']
        # MNIST data input is a 1-D vector of
        # 784 features (28*28 pixels)
        x = tf.reshape(x, shape=[-1, 28, 28, 1])
```

Callgraph Analysis

Which functions may be called?

```
class Foo:
    def baz():
class Bar:
    def baz():
         . . .
x = Foo()
x.baz()
x = Bar()
x.baz()
```

Callgraph Analysis

Which functions may be called?

```
class Foo:
    def baz():
class Bar:
    def baz():
x = Foo()
x baz()
x = Bar()
x baz()
```

Dataflow Graph

Dataflow from y to x: $x \prec y$

```
# Assignment
x = y
# Return
def foo():
    return y
x = foo()
```

```
# Function call

def foo(x):
    ...
foo(y)
```

Tensor Estimate

Tensor estimate T(x) by induction:

Base case: Type annotations

Induction step:

- $ightharpoonup T(x) \subseteq T(y)$ if $x \prec y$
- ▶ $T(x) \subseteq z$ if $x \prec \text{reshape}(y, z) \land \exists z_i \in S(z) : T(y) \doteq z_i$
- ▶ other *TensorFlow* APIs

Tensor Estimate

Tensor estimate T(x) by induction:

Base case: Type annotations

Induction step:

- $ightharpoonup T(x) \subseteq T(y)$ if $x \prec y$
- ▶ $T(x) \subseteq z$ if $x \prec \text{reshape}(y,z) \land \exists z_i \in S(z) : T(y) \doteq z_i$
- ▶ other *TensorFlow* APIs

Tensor Estimate

Tensor estimate T(x) by induction:

Base case: Type annotations

Induction step:

- $ightharpoonup T(x) \subseteq T(y)$ if $x \prec y$
- ▶ $T(x) \subseteq z$ if $x \prec \text{reshape}(y,z) \land \exists z_i \in S(z) : T(y) \doteq z_i$
- other TensorFlow APIs

Evaluation

- ► Modeled four *TensorFlow* API functions
- ► Analyzed six ML programs
- ► No false positives
- Fast execution

Evaluation

- ► Modeled four *TensorFlow* API functions
- ► Analyzed six ML programs
- ► No false positives
- ► Fast execution

Conclusion

- ► Machine Learning programs in dynamic languages (*Python*)
- Type system for tracking tensors
- Dataflow Analysis
 - ⇒ Modeling *Python* in WALA
- ► Fast execution and precise results

References

*) Julian Dolby, Avraham Shinnar, Allison Allain, and Jenna Reinen. **Ariadne: Analysis for Machine Learning Programs**. *In Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages*, pages 1-10, 2018.

Questions?