
Ariadne: Analysis for Machine Learning
Programs

Fabian Schiebel

University of Paderborn, Institute for Computer Science,
fabianbs@mail.uni-paderborn.de

Seminar: Advanced Techniques in Software Analysis

June 17, 2020

Abstract. Most programs for machine learning are written in dynamic
languages like Python. Due to their lack of strong static typing, many
errors are found only at runtime or not at all. Such errors often appear
very late in the software development lifecycle or even after deployment.
To overcome this, a static code analysis can be used. Thus, this report
presents a static code analysis that can be used to find errors in machine
learning programs written in Python which use the TensorFlow library.
The analysis consists of a custom type system for tracking tensors and
a dataflow analysis to verify their usage.

1 Introduction

Machine learning is an emerging area in computer science. Therefore, many ap-
plications like Google, Facebook, etc. rely on the correctness of machine learning
programs. This leads to two general problems. At first, most machine learning
programs are written in dynamic languages like Python. Hence, most errors are
only discovered at runtime, when the erroneous code part gets executed. More-
over, machine learning involves much nondeterminism due to probabilistics that
can be executed no matter if it makes sense in the context of its execution.
This can lead to legal results, which are nevertheless wrong. Those errors cannot
be detected by the Python infrastructure and need extensive testing to be found.

Thus, errors can only be found, if the machine learning program is fully imple-
mented and executable, which is very late in the software development lifecycle
where fixing errors is very expensive. So, Dolby et al. [4] developed the static
analysis tool Ariadne for finding errors in machine learning programs early. They
focus on programs written in Python which use the commonly used machine
learning library TensorFlow [1]. For specifying the static analysis they use and
extend the WALA [3] analysis framework and developed a custom type system
for tracking tensors, that are mathematical constructs used for machine learning
(Refer 2.1). There are several other static analysis frameworks, like Soot [7] for
example, but they do not support analyzing dynamically typed languages like

2 Fabian Schiebel

Python. In contrast, WALA supports efficient and precise analysis of JavaScript
code. Hence, Dolby et al. [4] extend the existing WALA framework to support
a subset of Python that is used for writing machine learning programs.

In the following sections, necessary background information is given (2) and
after that the approach of Dolby et al. [4] is presented in detail.

2 Background

To understand the concepts of the presented static analysis Ariadne, some back-
ground information is required. This section summarizes the most important
background aspects.

2.1 TensorFlow

TensorFlow [1] is a widely used framework for writing machine learning programs
in various languages e.g. Python. A commonly used tool in TensorFlow are so-
called tensors. They are mathematical constructs, very similar to n-dimensional
matrices. Among other features, TensorFlow offers many possibilities to compute
with tensors, for example to change the dimensions using the reshape operation
or to add tensors together, convert them to an array, and others.

2.2 WALA

T.J. Watson Libraries for Analysis (WALA) [3] is a framework written in Java
which provides static code analysis solvers for analyzing programs written in
an intermediate representation (WALA IR). WALA already provides an API to
convert source code from several programming languages e.g. Java, JavaScript,
etc. into WALA IR and thus to analyze programs written in those languages.

To analyze the IR, WALA provides interprocedural dataflow analyses using an
extension of the IFDS framework [9] which makes it precise and high perfor-
mant. Furthermore, it provides several helper analyses like pointer analysis and
callgraph analysis. The helper analyses’ results can be used by the IFDS solver
to enhance the precision of the dataflow analysis results.

2.3 Pointer Analysis

Pointer analysis is used to decide whether two variables may refer to the same
object in memory, i.e. they alias. If two variables x and y alias, then every change
in x will be automatically reflected in y and vice versa. Moreover, every dataflow
into x also implicitly flows into y ; thus dataflow analyses need to have pointer
information in order to be sound.

Unfortunately, pointer analysis is not distributive which makes it impossible to

Ariadne: Analysis for Machine Learning Programs 3

use efficient analysis frameworks like IFDS [9] directly. So, many pointer analyses
use information from the language’s type system to reduce the problem space,
as variables of incompatible types cannot alias. However, in dynamic languages
like Python, those optimizations cannot be applied directly, since the type of a
variable is only available at runtime.

2.4 Callgraph Analysis

Call graph analysis is very similar to pointer analysis, but it focuses on resolving
dynamic callsites. Any interprocedural dataflow analysis eventually needs to deal
with function calls. It mostly does so by resolving the callee function, analyzes
it and then uses the results to compute the dataflow facts in the caller. Hence,
it is necessary to be able to find all callee functions even if the callsite contains
a virtual method which may get overwritten by subclasses in an object oriented
environment.

In Python, callgraph analysis is particularly difficult because there are not only
virtual functions, but also mutable function-pointers and higher-order functions.
Moreover, most callgraph construction algorithms use the language’s static type
system to make the callgraph more precise and to speedup the analysis. How-
ever, as for pointer analysis, this is hard for dynamically typed languages like
Python.

3 Ariadne

This section explains the static code analysis Ariadne in detail. It starts with a
description on how Python programs are mapped to the WALA framework, fol-
lowed by the definition of the tensor typesystem and finally the dataflow analysis.

To explain how these constructs work, a shortened version of the example pro-
gram (refer Listing 1.1) from the paper [4] is used. The main functionality of
this program snippet is the reshape operation at the bottom. It takes a tensor
and transforms it to a new shape while preserving the total size. In order to
correctly perform this operation, the input tensor x needs to be compatible with
the shape parameter [-1, 28, 28, 1].

Since Python is a dynamically typed language, this requirement can only be
checked by the developers by carefully reading the comments. The goal of the
analysis is, to automatically verify that this reshape operation (and other Ten-
sorFlow APIs) is legal on all execution paths.

4 Fabian Schiebel

Listing 1.1. Example: Snippet of a program training for image recognition

import tensorflow as tf
...
def conv_net(x_dict, n_classes, dropout, reuse, is_training):
Define a scope for reusing the variables
with tf.variable_scope(’ConvNet’, reuse=reuse):
x = x_dict[’images’]
MNIST data input is a 1-D vector of
784 features (28*28 pixels)
Reshape to match picture format
[Height x Width x Channel]
Tensor input become 4-D:
[Batch Size, Height, Width, Channel]
x = tf.reshape(x, shape=[-1, 28, 28, 1])
...

3.1 Mapping Python to WALA

For being able to analyze Python programs with WALA, the program under
analysis first needs to be transformed into a representation which WALA can
work with. This representation is the WALA Intermediate Representation and
can be automatically generated from a WALA interface called Common Ab-
stract Syntax Tree (CAst). So, the Python program must first be converted to
an equivalent CAst representation which then gets automatically transformed to
WALA IR. The CAst interface is written in Java. Luckily, there exists a Python
interpreter Jython [6] written in Java. So Dolby et al. [4] use Jython to parse
the Python program under analysis and transform the Jython AST to the CAst
interface.

This transformation is often very easy, because the most constructs like if, for,
etc. are already directly representable in CAst with special nodes. However, some
Python constructs like import statements are not directly representable in the
CAst, so Dolby et al. [4] extended the CAst with custom nodes representing
those constructs.

Finally, WALA does not perform the analysis directly on the CAst, but on an
intermediate representation (IR). So, before starting the analysis, WALA trans-
forms the input CAst to its IR. Since the CAst of the Python program under
analysis contains custom nodes and since other constructs have special seman-
tics, Dolby et al. [4] needed to extend the WALA IR too. Especially method calls
were hard to model. This is, because in Python methods are assignable objects
even if they are bound to a receiver object. To resolve this, the authors have used
so called trampoline instructions to create a function-pointer which captures the
self reference.

Ariadne: Analysis for Machine Learning Programs 5

Listing 1.2. Different ways of calling a function in Python (vgl. [4])

class Foo:
def f(self, x):
...

x = Foo()
Call x.f the normal way
x.f(3)
Call x.f through a function-pointer
y = x.f
y(3)
Call x.f explicitly
Foo.f(x, 3)
Reassign x.f and call it explicitly
x.f = Foo.f
x.f(x, 3)

In the example 1.2, the first two calls would be represented in the WALA IR by
calling the trampoline which automatically binds self to x. The last two calls
instead would be represented by calling the normal non-trampoline function
Foo.f.

3.2 Tensor Typesystem

To enable a dataflow analyses of Python programs that use the TensorFlow
framework, the analysis needs to understand, what variables hold tensors and
which dimensions those tensors have. Thus, Dolby et al. [4] developed a type
system for Python which is specialized on tensors.

The types π are defined inductively with the normal Python types as base case
including record types and function types. Then the term [d1, . . . , dn of π] de-
fines a tensor type with elements of type π and the dimensions d1, . . . , dn for a
n ∈ N

In the example (Listing 1.1), the variable x after the assignment
x = x_dict[’images’] is of the tensor type [batch, y(28) ∗ x (28) of channel]
provided that the parameter x_dict is of a record type {images : [batch, y(28) ∗
x (28) of channel]}. Here, batch and y(28) ∗ x (28) are the two tensor dimensions
and channel is a numeric type. The second dimension is special in that it is
composed of two other dimensions y and x which are both of length 28.
As shown in the example, each dimension can be attached with an optional la-
bel; in this case batch, x and y . This label can be used to give each dimension a
meaning in order to prevent unintentional reordering of dimensions.

6 Fabian Schiebel

This enables the analysis to verify that the operation
x = tf.reshape(x, shape=[-1, 28, 28, 1]) is valid and correctly decom-
poses the second dimension resulting in [batch, x (28), y(28), 1 of channel] as type
for x after the reshape operation. Would the shape instead be [-1, 28, 29, 1],
the types would not match, since the original size of the second dimension is
28 · 28 = 784 which does not equal the total size of the new decomposed dimen-
sions 28 · 29 6= 784.

Finally, the type system contains an artificial > type which is used for all irrel-
evant types. Variables of type > are ignored by the dataflow analysis.

3.3 Dataflow Analysis

The actual analysis consists of several parts. It starts with a WALA callgraph-
and pointer analysis which produce a dataflow graph G. Its nodes V are the set
of program variables. Two nodes x , y ∈ V are connected by an edge, iff there
is a dataflow from y to x , denoted by x ≺ y . Additionally, the dataflow graph
contains points-to information S (v) for each variable v ∈ V representing all
objects which can be held by v .

This dataflow graph is used to define the typing analysis which assigns every
variable v ∈ V a set of possible types T (v). The analysis considers several cases:
For input variables, e.g. function parameters, the type cannot be deduced, so it
must be declared explicitly. Those type information are the seeds of the analy-
sis. Of course, type information propagates with every dataflow. Thus, given two
variables x , y ∈ V with a dataflow x ≺ y . Then x can only be of a type which
is valid for y . Hence, it holds T (x) ⊆ T (y)

Finally, the analysis needs to deal with the library calls into TensorFlow, e.g.
calls to reshape, etc. The problem is that usually, the source code of TensorFlow
is not available to the analysis. So, the analysis needs to model each relevant
API function of TensorFlow explicitly. Given the example in Listing 1.1, there
is a call to the TensorFlow function reshape.
To model the influence of reshape on the typing analysis, it is necessary to define
which tensor types can be reshaped into which other types. Let t1, t2 be tensor
types. Then it holds t1

.
= t2, if and only if tensors of type t1 can be reshaped

to tensors of type t2. Assuming, the second argument to the reshape operation
represents a tensor type, its influence on the typing analysis can be defined as
follows: Let x ∈ V be a tensor variable which is used as first argument to a call to
reshape with dimension argument z and y ∈ V a variable with a dataflow from
the result of the reshape operation to y (y ≺ reshape(x , z)). It can be observed
that the new tensor shape can be deduced from the second argument z ; con-
cretely, from its possible values S (z). So it holds T (y) ⊆ {t ∈ S (z) | T (x)

.
= t}.

Ariadne: Analysis for Machine Learning Programs 7

4 Evaluation

Dolby et al. [4] have modeled the TensorFlow functions reshape, conv2d,
conv3d and placeholder in their dataflow analysis. To check whether the tool
Ariadne works as expected, they tested it on six Python programs for image
recognition.

It turned out that Ariadne was able to analyze all of these programs and verified
that they used the analyzed TensorFlow APIs correctly. The analysis did not
give any false positives, so it was very precise. However, they do not make any
assumptions on the false negative rate which is probably very high as Ariadne
was only modeled for a very small fraction of the TensorFlow API.
Furthermore, Dolby et al. [4] were able to run the analysis in only a few seconds.
Hence, Ariadne works very well on the parts it was modeled for.

5 Related Work

There are several tools which provide static analyses of Python programs. Most
of them, like Pylint [2] only perform code quality checks and do not perform a
whole-program analysis.
Furthermore, there is one tool Python Taint [8] which can run dataflow analyses
for finding security vulnerabilities in Python code. However, their interprocedu-
ral analysis is highly unsound because they perform function resolution by name
rather than by function pointers, as is done in Ariadne.
Moreover, the tool Nagini [5] can automatically verify non-trivial properties
of Python programs that are annotates with special assert statements. Those
statements are used to formulate pre- and postconditions of functions and loop
invariants. Unlike Ariadne, Nagini requires the whole program to be type anno-
tated, but does not support tensor types. So it covers different uses cases than
Ariadne.
There are also other tools for static analysis, but they use machine learning in
order to implement the analysis, instead of analyzing machine learning code.

6 Conclusion

Dolby et al. have developed a static analysis to statically typecheck Python pro-
grams that use the machine learning framework TensorFlow. For this analysis,
they first modeled the syntax and semantics of Python programs in the WALA
IR. They created a custom type system for tracking tensors in Python and finally
defined the actual dataflow analysis.

They have evaluated the analysis on several machine learning programs and
verified (for a small subset of the TensorFlow API) that these programs used
the APIs correctly. As the analysis was very precise and efficient, it can be said

8 Fabian Schiebel

that this concept of verifying the correctness of machine learning programs us-
ing static analysis works very well. Thus, it is worth to model more TensorFlow
APIs and even more machine learning frameworks in this way in order to find
errors early in the software development lifecycle where fixing them is cheap.

References

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensor-
flow: Large-scale machine learning on heterogeneous systems. 2015.

[2] Python Code Quality Authority. Pylint.
[3] IBM T.J. Watson Research Center. Watson libraries for analysis.
[4] Julian Dolby, Avraham Shinnar, Allison Allain, and Jenna Reinen. Ariadne: anal-

ysis for machine learning programs. In Proceedings of the 2nd ACM SIGPLAN
International Workshop on Machine Learning and Programming Languages, pages
1–10, 2018.

[5] Marco Eilers and Peter Müller. Nagini: a static verifier for python. In International
Conference on Computer Aided Verification, pages 596–603. Springer, 2018.

[6] Jim Hugunin and Barry Warsaw. Jython: Python for the java platform.
[7] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. Soot-a java byte-

code optimization framework. In Cetus Users and Compiler Infrastructure Work-
shop, pages 1–11, 2011.

[8] Stefan Micheelsen and Bruno Thalmann. Pyt: A static analysis tool for detecting
security vulnerabilities in python web applications.

[9] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 49–61, 1995.

