Martin SpieBl

LMU Munich

5. September 2017

(O B = o«

DA 1/14



DA 2/14



Slicing Abstractions Idea

» Split abstraction state into
two states

» Disjunction of the splitted
states represent the same
concrete states as in the
original state = soundness

» Incoming & outgoing edges
have to be copied




Slicing Abstractions Idea

Split abstraction state into
two states

Disjunction of the splitted
states represent the same
concrete states as in the
original state = soundness
Incoming & outgoing edges
have to be copied

Slice by removing infeasible
edges

disconnected subgraphs
can be removed



Slicing Abstractions in Software Model Checking

Briickner, Drager, Finkbeiner, Wehrheim (2007). Slicing
Abstractions

» program counter tracked symbolically
» uses predicate abstraction

» Implementation: SLAB

Ermis, Hoenicke, Podelski (2012). Splitting via Interpolants

» explicit program counter

» no predicate abstraction computation (comparable to
IMPACT)

> uses Large-Block Encoding

» Implementation: Ultimate Kojak



SOk W NN RO

example.c
int i = 0;
do {
assert i =
if (=) {
i = 1;

}

while (true);

0;

«0O>» «F)r « >

DA 4/14



» Split: Split states along the error path using interpolants
» Slice: Remove infeasible edges

» when finding a feasible counterexample: return false

» when all error states are disconnected: return true

«0O0>» «F)r «E)>» «

>

DA 5/14



Abstraction

DA 6/14



Abstraction

DA 7/14



DA g/14



CPA+ Algorithm Setup for Kojak

Algorithm 1: CPA+ Algorithm (simplified)

while waitlist # () do
pop e from waitlist
forall &’ with e ~ €’ do
forall e’’ € reached do
enew := merge (€', €’")
if enew # €’ then
waitlist := (waitlist U {enew }) \ {€”'}
reached := (reached U {epew}) \ {€”}
if not stop(e’, reached) then
waitlist := waitlist U {e’}
reached := reached U {e’}
return (reached, waitlist)

T

T T T



CPA+ Algorithm Setup for Kojak

Algorithm 1: CPA+ Algorithm (simplified) > merge operator:

while waitlist 7 0 do_ Merge states at same
pop e from waitlist
forall ¢’ with e ~ ¢’ do location in the ARG, but
forall '’ € reached do
€new 1= merge (&', ") do not re-add them to the
if enew # €’ then T
waitlist := (waitlist U {enen}) \ {€} waitlist

reached := (reached U {epew}) \ {€”}
if not stop(e’, reached) then
waitlist := waitlist U {e’}
reached := reached U {e’}
return (reached, waitlist)

T

T T T
o o-o *could also be done using an
‘ additional CPA that tracks all parent

locations for a state



CPA+ Algorithm Setup for Kojak

Algorithm 1: CPA+ Algorithm (simplified) > merge operator:

while waitlist # 0 do. Merge states at same
pop e from waitlist
forall ¢’ with e ~~ ¢’ do location in the ARG, but
forall '’ € reached do
€new 1= merge (&', ") do not re-add them to the
if enew # €’ then T
waitlist := (waitlist U {enen}) \ {€} waitlist
reached := (reached U {epew}) \ {€”} i L. i
if not stop (¢', reached) then > stopsep is sufficient, since
waitlist := waitlist U {e’} .
reached := reached U {e'} all states have abstraction

return (reached, waitlist)

formula T

T

T T T
o o-o *could also be done using an
‘ additional CPA that tracks all parent

locations for a state



CPA+ Algorithm Setup for Kojak

Algorithm 1: CPA+ Algorithm (simplified) > merge operator:

while waitlist # 0 do. Merge states at same
pop e from waitlist
forall ¢’ with e ~~ ¢’ do location in the ARG, but
forall '’ € reached do
€new 1= merge (&', ") do not re-add them to the
if enew # €’ then T
waitlist := (waitlist U {enen}) \ {€} waitlist
reached := (reached U {epew}) \ {€”} i L. i
if not stop (¢', reached) then > stopsep is sufficient, since
waitlist := waitlist U {e’} .
reached := reached U {e'} all states have abstraction

return (reached, waitlist)

formula T

» Global Refinement:
T
Counterexamples are not
o refined until the algorithm
finishes

T T
o o-o *could also be done using an

T

additional CPA that tracks all parent
locations for a state



Slicing Abstractions as CEGAR Refinement Strategy

Algorithm 2: CEGAR Algorithm (simplified

while /grr € reached do
(reached, waitlist) := CPA+ (reached, waitlist)
if Iegr € reached then
(reached, waitlist) := refine (reached, waitlist)
if Iegr € reached then
return false

else

return true
return true




Slicing Abstractions as CEGAR Refinement Strategy

Algorithm 2: CEGAR Algorithm (simplified » Formulate Splitting and

while /grr € reached do s
(reached, waitlist) := CPA+ (reached, waitlist) SlICIng as CEGAR
if Iegr € reached then 1
(reached, waitlist) := refine (reached, waitlist) Refinement S.trategy
if Iegr € reached then (Ca”ed n reﬁne)
return false

else

return true
return true




Slicing Abstractions as CEGAR Refinement Strategy

Algorithm 2: CEGAR Algorithm (simplified » Formulate Splitting and

while /grr € reached do s
(reached, waitlist) := CPA+ (reached, waitlist) SlICIng as CEGAR
if Iegr € reached then 1
(reached, waitlist) := refine (reached, waitlist) Refinement S.trategy
if Ierr € reached then (Ca”ed in reﬁne)

return false
else

et o etum true » Strategy repeats Splitting

and Slicing until feasible
counterexample is found or
all error states have been
removed




Slicing Abstractions as CEGAR Refinement Strategy

Algorithm 2: CEGAR Algorithm (simplified

while /grr € reached do
(reached, waitlist) := CPA+ (reached, waitlist)
if Iegr € reached then
(reached, waitlist) := refine (reached, waitlist)
if Iegr € reached then
return false
else

return true
return true

» Formulate Splitting and

Slicing as CEGAR
Refinement Strategy
(called in refine)

Strategy repeats Splitting
and Slicing until feasible
counterexample is found or
all error states have been
removed

= CPA+ and refine will
only be called once in this
setup



Adjustable-Block Encoding

» ABE as flexible replacement for LBE (used by Kojak)

» PredicateCPA is already used to store abstraction formulas
=- ABE from PredicateCPA can be reused

» However: BlockFormulas from PredicateCPA cannot be used
because the abstraction states in the ARG do not form a tree
anymore (previous abstraction state will be ambigious)
= dynamically recalculate them

» Loss of tree shape in ARG causes other problems

» Non-abstraction states have to be copied when splitting states
(example on next slide)



i

!m o
T CLOBAL VARS

mpsddO:

e
ine 16
sbel: ERROR

DA 12/14



In Refinement after Spliting

==
e —

In Refinement afier slicing

DA 13/14



Possible Applications

Slicing Abstractions Refinement Strategy

» Can be used instead of other Refinement Strategies

» Will preserve tree structure in ARG, e.g. in an IMPACT
configuration

» Leads to similar or identical results as IMPACT, depending on
setting

Kojak-like Analysis

» Can generate (non-inductive) invariants
» Explore different block sizes using ABE

» Explore different optimizations to edge slicing process (reduce
number of solver calls)



