
1/14

Slicing Abstractions for CPAchecker

Martin Spießl

LMU Munich

5. September 2017

2/14

Slicing Abstractions Idea

I Split abstraction state into
two states

I Disjunction of the splitted
states represent the same
concrete states as in the
original state ⇒ soundness

I Incoming & outgoing edges
have to be copied

I Slice by removing infeasible
edges

I disconnected subgraphs
can be removed

2/14

Slicing Abstractions Idea

I Split abstraction state into
two states

I Disjunction of the splitted
states represent the same
concrete states as in the
original state ⇒ soundness

I Incoming & outgoing edges
have to be copied

I Slice by removing infeasible
edges

I disconnected subgraphs
can be removed

2/14

Slicing Abstractions Idea

I Split abstraction state into
two states

I Disjunction of the splitted
states represent the same
concrete states as in the
original state ⇒ soundness

I Incoming & outgoing edges
have to be copied

I Slice by removing infeasible
edges

I disconnected subgraphs
can be removed

3/14

Slicing Abstractions in Software Model Checking

Brückner, Dräger, Finkbeiner, Wehrheim (2007). Slicing
Abstractions

I program counter tracked symbolically

I uses predicate abstraction

I Implementation: SLAB

Ermis, Hoenicke, Podelski (2012). Splitting via Interpolants

I explicit program counter

I no predicate abstraction computation (comparable to
IMPACT)

I uses Large-Block Encoding

I Implementation: Ultimate Kojak

4/14

Example Program

example.c

0 i n t i = 0 ;
1 do {
2 a s s e r t i == 0 ;
3 i f (∗) {
4 i = 1 ;
5 }
6 w h i l e (t r u e) ;

CFA

5/14

Splitting via Interpolants (Kojak)

Basic Steps:

I Split: Split states along the error path using interpolants

I Slice: Remove infeasible edges

Termination

I when finding a feasible counterexample: return false

I when all error states are disconnected: return true

6/14

Splitting via Interpolants (Kojak)

CFA

Abstraction

7/14

Splitting via Interpolants (Kojak)

Abstraction
Split

8/14

Splitting via Interpolants (Kojak)

Split
Slice

9/14

CPA+ Algorithm Setup for Kojak

Algorithm 1: CPA+ Algorithm (simplified)

while waitlist 6= ∅ do
pop e from waitlist
forall e′ with e e′ do

forall e′′ ∈ reached do
enew := merge (e′, e′′)
if enew 6= e′′ then

waitlist := (waitlist ∪ {enew}) \ {e′′}
reached := (reached ∪ {enew}) \ {e′′}

if not stop (e′, reached) then
waitlist := waitlist ∪ {e′}
reached := reached ∪ {e′}

return (reached,waitlist)

I merge operator:
Merge states at same
location in the ARG, but
do not re-add them to the
waitlist*

I stopsep is sufficient, since
all states have abstraction
formula >

I Global Refinement:
Counterexamples are not
refined until the algorithm
finishes

*could also be done using an
additional CPA that tracks all parent
locations for a state

9/14

CPA+ Algorithm Setup for Kojak

Algorithm 1: CPA+ Algorithm (simplified)

while waitlist 6= ∅ do
pop e from waitlist
forall e′ with e e′ do

forall e′′ ∈ reached do
enew := merge (e′, e′′)
if enew 6= e′′ then

waitlist := (waitlist ∪ {enew}) \ {e′′}
reached := (reached ∪ {enew}) \ {e′′}

if not stop (e′, reached) then
waitlist := waitlist ∪ {e′}
reached := reached ∪ {e′}

return (reached,waitlist)

I merge operator:
Merge states at same
location in the ARG, but
do not re-add them to the
waitlist*

I stopsep is sufficient, since
all states have abstraction
formula >

I Global Refinement:
Counterexamples are not
refined until the algorithm
finishes

*could also be done using an
additional CPA that tracks all parent
locations for a state

9/14

CPA+ Algorithm Setup for Kojak

Algorithm 1: CPA+ Algorithm (simplified)

while waitlist 6= ∅ do
pop e from waitlist
forall e′ with e e′ do

forall e′′ ∈ reached do
enew := merge (e′, e′′)
if enew 6= e′′ then

waitlist := (waitlist ∪ {enew}) \ {e′′}
reached := (reached ∪ {enew}) \ {e′′}

if not stop (e′, reached) then
waitlist := waitlist ∪ {e′}
reached := reached ∪ {e′}

return (reached,waitlist)

I merge operator:
Merge states at same
location in the ARG, but
do not re-add them to the
waitlist*

I stopsep is sufficient, since
all states have abstraction
formula >

I Global Refinement:
Counterexamples are not
refined until the algorithm
finishes

*could also be done using an
additional CPA that tracks all parent
locations for a state

9/14

CPA+ Algorithm Setup for Kojak

Algorithm 1: CPA+ Algorithm (simplified)

while waitlist 6= ∅ do
pop e from waitlist
forall e′ with e e′ do

forall e′′ ∈ reached do
enew := merge (e′, e′′)
if enew 6= e′′ then

waitlist := (waitlist ∪ {enew}) \ {e′′}
reached := (reached ∪ {enew}) \ {e′′}

if not stop (e′, reached) then
waitlist := waitlist ∪ {e′}
reached := reached ∪ {e′}

return (reached,waitlist)

I merge operator:
Merge states at same
location in the ARG, but
do not re-add them to the
waitlist*

I stopsep is sufficient, since
all states have abstraction
formula >

I Global Refinement:
Counterexamples are not
refined until the algorithm
finishes

*could also be done using an
additional CPA that tracks all parent
locations for a state

10/14

Slicing Abstractions as CEGAR Refinement Strategy

Algorithm 2: CEGAR Algorithm (simplified

while lERR ∈ reached do
(reached,waitlist) := CPA+ (reached,waitlist)
if lERR ∈ reached then

(reached,waitlist) := refine (reached,waitlist)
if lERR ∈ reached then

return false
else

return true
return true

I Formulate Splitting and
Slicing as CEGAR
Refinement Strategy
(called in refine)

I Strategy repeats Splitting
and Slicing until feasible
counterexample is found or
all error states have been
removed

I ⇒ CPA+ and refine will
only be called once in this
setup

10/14

Slicing Abstractions as CEGAR Refinement Strategy

Algorithm 2: CEGAR Algorithm (simplified

while lERR ∈ reached do
(reached,waitlist) := CPA+ (reached,waitlist)
if lERR ∈ reached then

(reached,waitlist) := refine (reached,waitlist)
if lERR ∈ reached then

return false
else

return true
return true

I Formulate Splitting and
Slicing as CEGAR
Refinement Strategy
(called in refine)

I Strategy repeats Splitting
and Slicing until feasible
counterexample is found or
all error states have been
removed

I ⇒ CPA+ and refine will
only be called once in this
setup

10/14

Slicing Abstractions as CEGAR Refinement Strategy

Algorithm 2: CEGAR Algorithm (simplified

while lERR ∈ reached do
(reached,waitlist) := CPA+ (reached,waitlist)
if lERR ∈ reached then

(reached,waitlist) := refine (reached,waitlist)
if lERR ∈ reached then

return false
else

return true
return true

I Formulate Splitting and
Slicing as CEGAR
Refinement Strategy
(called in refine)

I Strategy repeats Splitting
and Slicing until feasible
counterexample is found or
all error states have been
removed

I ⇒ CPA+ and refine will
only be called once in this
setup

10/14

Slicing Abstractions as CEGAR Refinement Strategy

Algorithm 2: CEGAR Algorithm (simplified

while lERR ∈ reached do
(reached,waitlist) := CPA+ (reached,waitlist)
if lERR ∈ reached then

(reached,waitlist) := refine (reached,waitlist)
if lERR ∈ reached then

return false
else

return true
return true

I Formulate Splitting and
Slicing as CEGAR
Refinement Strategy
(called in refine)

I Strategy repeats Splitting
and Slicing until feasible
counterexample is found or
all error states have been
removed

I ⇒ CPA+ and refine will
only be called once in this
setup

11/14

Adjustable-Block Encoding

I ABE as flexible replacement for LBE (used by Kojak)

I PredicateCPA is already used to store abstraction formulas
⇒ ABE from PredicateCPA can be reused

I However: BlockFormulas from PredicateCPA cannot be used
because the abstraction states in the ARG do not form a tree
anymore (previous abstraction state will be ambigious)
⇒ dynamically recalculate them

I Loss of tree shape in ARG causes other problems

I Non-abstraction states have to be copied when splitting states
(example on next slide)

12/14

13/14

14/14

Possible Applications

Slicing Abstractions Refinement Strategy

I Can be used instead of other Refinement Strategies

I Will preserve tree structure in ARG, e.g. in an IMPACT
configuration

I Leads to similar or identical results as IMPACT, depending on
setting

Kojak-like Analysis

I Can generate (non-inductive) invariants

I Explore different block sizes using ABE

I Explore different optimizations to edge slicing process (reduce
number of solver calls)

