
Liveness in Transactional Memory

Jan Frederik Haltermann

Paderborn University Institute for Computer Science,
33098 Paderborn, Germany

jfh@mail.upb.de

Abstract. Today, a software system does not simply execute different
programs one after another, they run in parallel, realized using threads
or multi core systems. A software transactional memory (STM) simplifies
parallel execution of programs by controlling and synchronizing shared
memory. Besides correctness of an STM, it is important to ensure live-
ness in such an algorithm to avoid phenomena like deadlocks or livelocks.
In this paper a formal definition of three different liveness properties is
presented and a comparison to existing liveness criteria used for concur-
rent programming is given. Moreover, it is proven that it is impossible
for an STM algorithm in a fault prone system to ensure opacity, a widely
used correctness criteria, and local progress, the strongest liveness prop-
erties. Finally, it is shown that the previous result can be generalized
and even holds for strict serializability..

Keywords: Software transactional memories, liveness, correctness, opacity

1 Introduction

Parallelism is a key factor to speed up the execution of different programs. In-
stead of executing them one after another, threads or multi-core processors are
used. One concept to synchronize several threads is to use locks. A programmer
can define a critical section, in which a threat should be executed atomically.
These locking mechanisms has some drawbacks, like potential deadlocks or the
need for a manual handling of locks. A software transactional memory (STM)
can circumvent these problems. Programmers can define transactions for critical
sections, whose execution is managed by the STM, controlling memory shared
between the different threads.
Correctness criteria for STM implementations like opacity guarantee that ’noth-
ing bad happens’[1], like a process reading an invalid memory location. An algo-
rithm that aborts every transaction directly will guarantee every existing correct-
ness criteria, e.g. opacity. But this algorithm does not behave like it is expected.
For that reason, a formal definition of liveness is needed, meaning that ’some-
thing good happens’[1], in this case the successful execution of transactions. In
the context of concurrent programming, several liveness properties are defined:
In 1991, Herlihy defines the liveness properties wait-freedom and non-blocking [8].
A concurrent system is wait-free, if it guarantees that no operations are pending,



2 Jan Frederik Haltermann

meaning every operation receives eventually a result. Moreover, every response
to a currently pending request can be answered without waiting for other dif-
ferent operations. This definition focuses on termination of operations, meaning
that every operation will eventually receive a result, not necessarily a positive
result. A weaker property is non-blocking, ensuring that some processes will re-
ceive a result for their requested operations. Obstruction-freedom, defined by
Herlihy et al. in 2003 [7] is weaker than non-blocking. If a system is obstruction-
free, a response to a operation is guarantees, iff the process is running isolated.
All definitions focus on the termination of a concurrent program. They do not
fit into the context of STMs, since they only enforce responses to called opera-
tions on shared objects. In contrast to concurrent programming, an STM may
abort transactions and restart them. An STM implementation that aborts ev-
ery transaction directly, will ensure wait-freedom, since no transactions needs to
wait or is blocked. However, this is not the expected behavior of a STM, thus
stronger definitions for liveness properties are needed. These definitions should
take the progress of operations into account, meaning that write or read oper-
ations on shared memory are executed successfully. They will not guarantee a
correct execution of transactions, therefore checking which liveness properties
and correctness criteria can be fulfilled in one STM implementation, is of great
importance.
In Section 2 a formal definition of the system is given and formal definitions
for STM liveness properties are given in Section 3. The Section 4 answers the
question, which liveness properties and correctness criteria cannot be fulfilled
by a single STM. Finally, the results are summarized and a outlook is given in
Section 5.

2 Fundamentals

A system consists of at least one shared object and n asynchronous processes, de-
noted by p1, . . . , pn . A process represents a thread and communicates with other
processes via the shared object. Processes can access a shared object via opera-
tions. These operations are realized using several base operations like compare-
and-swap or load. Each operation starts with an invocation event and ends with
a response event.

2.1 Histories

A configuration of the system is a snapshot of the states of all transactions and
all variables at a certain point in time. Initially, the system is in a ideal state
denoted by C0. Every time an operation is executed, the configuration of the
system changes, denoted by a step s. Each step is either a invocation event of an
operation, a response event on an operation or the execution of a base operation.
Base operations used are read, write and try to commit. A read on variable x by
process i is denoted x .read i and will return either the value v (x .read i → v) or
the transaction is aborted, denoted by Ai . A write of a value w to a variable x by



Liveness in Transactional Memory 3

process i is denoted by x .write(w)i and return either ok if the write wuccessful
or an abort of the transaction Ai . A commit-request of process i , is denoted
by tryC i and either the transaction is committed, denoted by C i , or aborted,
denoted by Ai . In the following, return values of a positive write and all tryC
events are not displayed to increase the readability of the figures.
An execution α of a system can therefore be formalized as the changes of system
states through steps, α = C0

s0→ C1
s1→ C2 . . . . A history H is the longest subse-

quence of operations on a single shared object, containing only invocation and
response events. Intermediate steps, like a compare-and-swap base operation on
a shared object, are omitted to increase readability.

2.2 Transactions

A transaction t is defined of a sequence of operations e1, . . . , ek , executed by a
process pi . The operations e1, . . . , ek−1 are read or write operations, where e1
is either the first operation of process pi or is succeeds a commit or an abort
event. The last event ek of a transaction t is either a commit event C i or an
abort event Ai .

A transaction t1 precedes another transaction t2,t1 ≤ t2, iff the commit or
abort event of t1 happens before t2 invokes its first operation. If neither t1 pre-
cedes t2 nor t2 precedes t1, they are concurrent. Transactions can either be
crashed, parasitic or correct. A transaction t is crashed, iff t performs a finite
number of operations in an infinite execution α, meaning that t does not perform
any operation from a point in time on. In contrast, a parasitic transaction takes
infinitely many steps in the execution but after a point in time it does not try to
commit. If a transaction is prematurely aborted, it is unclear whether the it tries
to commit or not, thus the transaction is not parasitic. Formally, a transaction t
is parasitic, iff in an infinite execution α a suffix α′ can be found such that t does
perform infinitely many operations that neither are tryC events nor a negative
response A. Transactions are correct, iff they are neither crashed nor parasitic.
A system is crash-prone, if transaction can crash and it is parasitic-prone if a
transaction can be parasitic. In Figure 1 each process is executing one transac-
tion The first transaction t1 repeatedly writes the value 1 to variable x and does
not try to commit. In contrast, the transaction t2 performs only a single write
on x and does not perform any further steps. The transaction t1 is parasitic and
t2 is crashed.

Fig. 1. Example for parasitic and crashed transactions



4 Jan Frederik Haltermann

2.3 Histories

As stated before, a history H is the longest subsequence of operations on a
single shared object, containing only invocation and response events. A history
is called complete, iff the last event of a transaction t (that is executed by pi) in
H is either an Ai event or an C i event. A history is called sequential, iff there
are no concurrent transactions in H. In a history, it is not possible to distinguish
crashed transactions from transactions, that are waiting (infinitely) long for a
response event. Therefore, the concept of fair histories in crash prone systems is
introduced, meaning that in a fair histories Fα crashed transactions are marked.
To obtain a fair history, a event crashk is inserted directly after e, where e is
the last event, executed by a crashed transaction tk . Two histories H ,H ′ are
equivalent, if every process behaves equivalent, or formally, iff H|pk

= H ′|pk
for

every process pk . The notation H|pk
simply means that all other processes except

pk are removed from H.
As stated in the first section, it is not enough for an STM liveness criteria to
require that an operation receives a result. Especially, the non-aborting return
value of an invoiced operation is relevant. This idea of liveness is captured in
the definition of progress for a process. Formally, a process pk makes progress,
if an infinite history contains infinitely many C k events. This implies that all
operations in all transactions executed by process pk will eventually return a
non-aborting result. A process pk runs alone in a history H, if there exists a
suffix H ′ such that pk is the only correct process in H ′.

3 Formal Definition of Liveness Properties

As stated in Section 1, the formal definitions of liveness given by Herlihy [6, 8] are
not sufficient for STMs. Thus, the formal definition of the liveness properties local
progress, global progress and solo progress is given by Bushkov and Guerraoui[2].
A liveness property L is defined as a set of histories, where each history fulfills
the liveness property. An STM algorithm A ensures a liveness property L, iff
the following holds: All fair histories Fα of the configurations α produced by
A are in L (Fα ∈ L). A liveness property L1 is stronger than another liveness
property L2, iff L1 ⊆ L2. L1 is weaker than L2 iff L1 ⊇ L2, otherwise they are
incomparable.

3.1 Local Progress

An infinite and fair history ensures local progress, iff every correct process pk

makes progress in H or H does not contain any correct processes. Denote by
Llocal the set containing all histories ensuring local progress. An example for a
history that fulfills local progress is given in Figure 2. Therein, the transactions
t1 and t3 are committed and since the four transactions are repeated infinitely
often, both processes contain infinitely many commit events and therefore make
progress. Comparing local progress to wait-freedom, it holds that Llocal ⊆ Lwait ,



Liveness in Transactional Memory 5

Fig. 2. Example for a history fulfilling local progress, adapted from [2]

since making progress is stronger than receiving a result. Lwait denotes the set
of histories that are wait-free. On the other hand it holds that Lwait 6⊆ Llocal ,
since a history H where every transaction is aborted is wait-free but does not
ensure local progress.

3.2 Global Progress

An infinite and fair history ensures global progress, iff at least one correct pro-
cess pk makes progress in H or H does not contain any correct processes. Denote
by Lglobal the set containing all histories ensuring global progress. An example
for a history that fulfills global progress is given in Figure 3. Therein, all trans-
actions executed by p2 are committed and all transactions executed by p1 are
aborted. Since the history is infinite, p2 contains infinitely many commit events
and therefore makes progress. Comparing global progress to non-blocking, it

Fig. 3. Example for a history fulfilling global progress, adapted from [2]

holds that Lglobal ⊆ Llock , where Llock denotes the set of non-blocking histories.
On the other hand it holds that Llock 6⊆ Lglobal , since in a history H where every
transaction is aborted, H is non-blocking but does not ensure global progress.
Lglobal and Lwait are incomparable.

3.3 Biprogressing

An infinite and fair history F is biprogressing, iff F contains at least two correct
process only if at least two processes make progress in F . Denote by Lbi the set
containing all histories that are biprogressing. Biprogressing is weaker compared
to local progress Lbi ⊆ Llocal , but stronger than global progress Lglobal ⊆ Lbi

and incomparable to wait-freedom.

3.4 Solo Progress

An infinite and fair history ensures solo progress, iff every correct process pk

makes progress in H, if it runs alone or H does not contain any correct processes.
Denote by Lsolo the set containing all histories ensuring global progress. An



6 Jan Frederik Haltermann

example for a history that fulfills solo progress is given in Figure 4. Therein the
process p1 makes progress from the point one where it is running alone, namely
when t3 is crashed. Comparing solo progress to obstruction-freedom, it holds that

Fig. 4. Example for a history fulfilling solo progress, adapted from [2]

Lsolo ⊆ Lobst , where Lobst denotes the set of histories that are obstruction-free.
On the other hand it holds that Lobst 6⊆ Lsolo , since a history H where every
transaction is aborted if it runs alone is obstruction-free but does not ensure
solo-progress. Lsolo and Llock are incomparable.

3.5 Comparison of Liveness Properties

In Figure 5 the liveness criteria presented in section 1 and 3 are compared regard-
ing their expressiveness. The figure contains all existing histories (number 8).
The strongest liveness criteria is local progress(1), as stated by Bushkov and
Guerraoui [2]. Weaker properties are wait-freedom(2), biprogessing(3), global
progress(4), non-blocking(5) and solo progress(6). The weakest is of the pre-
sented liveness properties is obstruction-freedom(7).

Fig. 5. Venn diagram comparing different liveness properties

4 Nonexistence of Opacity and Local Progress

After having defined liveness properties, that an STM algorithm can fulfill, the
question arises which liveness properties and which correctness criteria can be
guaranteed in a single STM. In this paper two widely used correctness criteria,
opacity [4] and strict serializability [10], will be used for the comparison. Formally,
a STM implementation is opaque iff there exists an equivalent sequential and
complete history H ′, such that H ′ preserve the real time ordering of H and that
every transaction ti in H ′ is legal [4]. Important to notice that opacity requires



Liveness in Transactional Memory 7

that committed and aborted transaction are legal. Moreover, the definition by
Guerraoui and Kapalka used is not prefix-closed. A prefix-closed definition, pre-
sented by Guerraoui and Kapalka in 2010, would additionally require that every
prefix of H needs to be opaque[5]. Papadimitriou defined strict serializability as
correctness criterion for databases, but it became also important in the context
of STM [10]. A history H ensures strict serializability, iff there exists an equiva-
lent sequential and complete history H ′ containing only committed transactions,
such that H ′ preserves the real time ordering of H and that every transaction
ti in H ′ is legal.
One main result, proven by Bushkov and Guerraoui [2], is stated in the following
theorem:

Theorem 1. For any fault prone system there does not exists a STM implemen-
tation ensuring local progress and opacity, if the process behavior is not known
in advance.

The proof uses the non-prefix-closed definition of opacity, but Bushkov and Guer-
raoui argue that the following proof also works for prefix-closed opacity[2]. Since
it is assumed that the system is error-prone, the proof is given for two cases:
First, if the system is assumed to be crash-prone, shown in Section 4.1 and sec-
ondly in Section 4.2, if the system is assumed to be parasitic-prone. The theorem
is proven by counter-position, assuming that there exist an STM ensuring local
progress and opacity. Firstly, an adversary is constructed aiming to execute two
processes in such a way, that either local progress or opacity is violated. There-
fore, it plays a predefined strategy presented in Figure 6 and in Figure 8. In both
strategies a transaction will take steps until receiving a result for its operation
and the other transaction does not take any steps in between. If an operation
will not receive a result for an operation, it will take infinitely many steps. The
process is correct but does not make progress, leading to a contradiction of local
progress. Thus, all transactions are obstruction-free.

4.1 Proof for a crash-prone system

Fig. 6. Strategy 1 of the adversary against a STM in a crash-prone system



8 Jan Frederik Haltermann

As stated above, every finite history needs to be opaque. The only way the
given strategy terminates is that the tryC 1 event receives a C 1 as response,
given that all operations are obstruction-free. The last two transactions of the
resulting concurrent history are given in Figure 7. Since the STM algorithm is
assumed to be opaque, there must exists an equivalent sequential history. Both
possible real-time orderings are given in Figure 7. Non of them is legal, since the
second transaction reads an invalid value. Hence, the STM algorithm will never

Fig. 7. Possible real-time orderings for the history obtained by strategy 1

return a C 1, because the resulting history will not be opaque, thus the strategy
will never terminate. Thereby, process p1 does not make progress in any infinite
history obtained by strategy 1, because the STM will never return a C 1 as
response to a tryC 1 event. Transactions executed by p2 cannot be crashed, since
they will always be executed after the x .read1, independently of the returned
result. Afterwards, p2 will take steps until all transaction is committed. Since a
transaction executed by p1 will never commit, the strategy will never terminate
and the starting state of the automaton will be reached infinitely often. Showing
that p1 is not crashed leads to a contradiction to the assumption. Process p1

can only crash after the execution of x .read1, if every tryC 2 event is aborted.
Otherwise, either x .write1(v ′′ + 1) or x .read1 is executed and p1 is not crashed.
Process p2 is correct and makes process, therefore tryC 2 will eventually receive
a C 2. Thus, p1 is correct and does not make progress in H, a contradiction to
the assumptions.

4.2 Proof for a parasitic-prone system

Strategy 2 will never terminate, since any finite history produced by Strategy
2 has the postfix shown in Figure 7 and violates opacity. Hence, p1 will never
receive a C 1 and therefore does not make any progress. Process p1 is parasitic,
iff p2 never receives a C 2 or the transactions of p1 are not permanently aborted
(otherwise p1 is correct by definition). Every transaction executed by p2 is either
aborted permanently or contains a tryC 2 event, thus, p2 is correct. Therefore,
p2 will eventually make progress, meaning that p1 is not parasitic but does not
make any progress. This is a contradiction to the assumptions. 2



Liveness in Transactional Memory 9

Fig. 8. Strategy 2 of the adversary against an STM in an parasitic-prone system

4.3 Generalized Result

Theorem 2. For any fault prone system and any liveness property L that is
biprogressing and stronger than solo progress, there is no STM implementation
that ensures L and strict serializability.

The proof for Theorem 2 for a crash-prone system works analogous as in Section
4.1: The adversary uses Strategy 1 from Figure 6 in a crash-prone system. Strat-
egy 1 will also never terminate, because the reasoning from Section 4.1 does not
take differences between aborted and committed transactions into account. For
that reason the arguments used for opacity can be applied to strict serializabil-
ity. Using a similar argumentation as in Section 4.1, p1 is correct. If p1 would
be crashed, p2 would run alone and makes progress. Thereby, p1 will eventually
perform operations and is not crashed. The infinite history F obtained by an
execution of strategy 1 will not contain any C 1 event, thus, p1 does not make
progress. Since p1 and p2 are correct, biprogressing is not ensured, a contradic-
tion to the generalized assumption.
In a parasitic-prone system, the adversary is playing Strategy 2 from Figure 8.
Using the same arguments as in Section 4.2, it can be shown that the Strategy 2
will never terminate and produced only infinite histories. As argued before, p2

is correct in an arbitrary execution α. Process p1 does not make progress in α,
thus, biprogresing is ensured, iff p1 would be parasitic. As stated in Section 4.2,
p1 is parasitic, iff p2 does not make progress. If p1 is parasitic, p2 is the only
correct process and therefore runs alone. Since the system ensures solo-progress,
p2 makes progress. Thus, p1 cannot be parasitic.

5 Conclusion

In this paper, formal definitions of liveness properties are given, namely for local
progress, global progress and solo progress. The three properties are compared
regarding their expressiveness with properties introduced for concurrent pro-
gramming. The main differences are outlined and the incomparability between



10 Jan Frederik Haltermann

some properties is exemplary shown. Furthermore, it is proven that it is impossi-
ble for an STM to ensure the liveness property local progress and the correctness
criteria opacity. This result is generalized, by showing that it is impossible to
ensure strict serializability as correctness criteria and biprogressing and solo-
progress as liveness criteria, assuming that the given system is error-prone.

There are several options to circumvent this fact and ensure liveness proper-
ties and correctness conditions in a STM: Firstly, if the system is assumed to be
fault free, opacity and local progress can both be ensured in a system using de-
ferred update, as shown by Lesani and Palsberg[9]. A second option is to weaken
the liveness property. One example for an STM algorithm, that ensures global
progress and opacity, is OSTM, developed by Fraser in 2010 [3]. Moreover, weak-
ening the assumptions made will circumvent the problem. In case all operations
executed are known in advance, a STM is able to determine a schedule that
ensures opacity and local progress. Thereby, the option to execute specific oper-
ations based on previous results is impossible, thus the strategy used in Section 4
will not work anymore. The approach to compute every possible scheduling in
advance is inefficient, but will work for a finite number of processes.

In further research two points are of interest: On the one hand it should
be investigated if local progress is the strongest liveness property or if even
stronger liveness properties can be defined. On the other hand, a generalization
of the impossibility results presented in Section 4.3 is investigated as one field
of research.

References

[1] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181–185, 1985.

[2] Victor Bushkov and Rachid Guerraoui. Liveness in Transactional Memory. In
Transactional Memory. Foundations, Algorithms, Tools, and Applications, pages
32–49. Springer, Cham, 2015.

[3] Keir Fraser. Practical lock-freedom. PhD thesis, University of Cambridge, 2004.
[4] Rachid Guerraoui and Micha l Kapa lka. Opacity : A Correctness Condition for

Transactional Memory. Technical Report LPD-REPORT-2007-004, 2007.
[5] Rachid Guerraoui and Micha l Kapa lka. Principles of Transactional Memory. Syn-

thesis Lectures on Distributed Computing Theory, 1(1):1–193, jan 2010.
[6] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: double-

ended queues as an example. In 23rd International Conference on Distributed
Computing Systems, 2003. Proceedings., pages 522–529. IEEE.

[7] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: double-
ended queues as an example. In 23rd International Conference on Distributed
Computing Systems, 2003. Proceedings., pages 522–529. IEEE, 2003.

[8] Maurice P. Herlihy. Wait-free synchronization. Toplas, 13(1):124–149, jan 1991.
[9] Mohsen Lesani and Jens Palsberg. LNCS 8205 - Proving Non-opacity.

[10] Christos H. Papadimitriou and Christos H. The serializability of concurrent
database updates. Journal of the ACM, 26(4):631–653, oct 1979.


	Liveness in Transactional Memory

