Label Ranking Datasets
 
Semi-synthetic
| Dataset | type | # Instances | # Features | # Labels | 
| authorship | A | 841 | 70 | 4 | 
| bodyfat | B | 252 | 7 | 7 | 
| calhousing | B | 20640 | 4 | 4 | 
| cpu-small | B | 8192 | 6 | 5 | 
| elevators | B | 16599 | 9 | 9 | 
| fried | B | 40769 | 9 | 5 | 
| glass | A | 214 | 9 | 6 | 
| housing | B | 506 | 6 | 6 | 
| iris | A | 150 | 4 | 3 | 
| pendigits | A | 10992 | 16 | 10 | 
| segment | A | 2310 | 18 | 7 | 
| stock | B | 950 | 5 | 5 | 
| vehicle | A | 846 | 18 | 4 | 
| vowel | A | 528 | 10 | 11 | 
| wine | A | 178 | 13 | 3 | 
| wisconsin | B | 194 | 16 | 16 | 
 
 Download (in .rar-format)
 
 These datasets have been used in:
 
- Weiwei Cheng, Jens Hühn, Eyke Hüllermeier
 Decision tree and instance-based learning for label ranking [pdf][bibtex][slides][poster][video]
 Proceedings of the 26th International Conference on Machine Learning (ICML-09): 161-168, Omnipress
 Montreal, Canada, June 2009
 
- Weiwei Cheng, Krzysztof Dembczyński, Eyke Hüllermeier
 Label ranking methods based on the Plackett-Luce model [pdf][bibtex][slides][poster]
 Proceedings of the 27th International Conference on Machine Learning (ICML-10): 215-222, Omnipress
 Haifa, Israel, June 2010
 
 
 
Real-world
| Dataset | # Instances | # Features | # Labels | 
| spo | 2465 | 24 | 11 | 
| heat | 2465 | 24 | 6 | 
| dtt | 2465 | 24 | 4 | 
| cold | 2465 | 24 | 4 | 
| diau | 2465 | 24 | 7 | 
 
 Download (in .rar-format)
 
 These datasets have been used in: 
 
- Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, Klaus Brinker
 Label ranking by learning pairwise preferences [pdf] [bibtex]
 Artificial Intelligence 172: 1897-1916, Elsevier
